首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4+CD8+ double-positive (DP) T cells represent a minor subpopulation of T lymphocytes found in the periphery of adult rats. In this study, we show that peripheral DP T cells appear among the first T cells that colonize the peripheral lymphoid organs during fetal life, and represent approximately 40% of peripheral T cells during the perinatal period. Later their proportion decreases to reach the low values seen in adulthood. Most DP T cells are small size lymphocytes that do not exhibit an activated phenotype, and their proliferative rate is similar to that of the other peripheral T cell subpopulations. Only 30-40% of DP T cells expresses CD8beta chain, the remaining cells expressing CD8alphaalpha homodimers. However, both DP T cell subsets have an intrathymic origin since they appear in the recent thymic emigrant population after injection of FITC intrathymically. Functionally, although DP T cells are resistant to undergo apoptosis in response to glucocorticoids, they show poor proliferative responses upon CD3/TCR stimulation due to their inability to produce IL-2. A fraction of DP T cells are not actively synthesizing the CD8 coreceptor, and they gradually differentiate to the CD4 cell lineage in reaggregation cultures. Transfer of DP T lymphocytes into thymectomized SCID mice demonstrates that these cells undergo post-thymic maturation in the peripheral lymphoid organs and that their CD4 cell progeny is fully immunocompetent, as judged by its ability to survive and expand in peripheral lymphoid organs, to proliferate in response to CD3 ligation, and to produce IL-2 upon stimulation.  相似文献   

2.
Human T cells are heterogeneous, varying in terms of their phenotype, functional capabilities, and history of Ag encounter. The derivation of a functionally relevant model for classifying CD4+ T cells has been hampered by limitations on the numbers of parameters that may be measured using classical four-color flow cytometry. In this study we have taken advantage of the introduction of reagents for five-color flow cytometry to develop a detailed, functionally meaningful scheme for classifying human CD4+ T cells. We show that CD4+ T cells are predominantly distributed among six of eight possible compartments, identified by the expression of CCR7, CD45RA, and CD28. We demonstrate novel phenotypic and functional correlates that justify the choice of these three molecules to define CD4+ T cell compartments. We note that CD4+ T cells with different Ag specificities are distributed differently among the six described subsets. On the basis of these results, we propose a cross-sectional model for classification of peripheral CD4+ T cells. Knowledge of where T cells lie on this model informs about their functional capacity and can reflect their history of Ag exposure.  相似文献   

3.
CD4(+)CD25(+) regulatory T cells (Tregs) suppress immunity to infections and tumors as well as autoimmunity and graft-vs-host disease. Since Tregs constitutively express CTLA-4 and activated T cells express B7-1 and B7-2, it has been suggested that the interaction between CTLA-4 on Tregs and B7-1/2 on the effector T cells may be required for immune suppression. In this study, we report that autopathogenic T cells from B7-deficient mice cause multiorgan inflammation when adoptively transferred into syngeneic RAG-1-deficient hosts. More importantly, this inflammation is suppressed by adoptive transfer of purified wild-type (WT) CD4(+)CD25(+) T cells. WT Tregs also inhibited lymphoproliferation and acquisition of activation markers by the B7-deficient T cells. An in vitro suppressor assay revealed that WT and B7-deficient T cells are equally susceptible to WT Treg regulation. These results demonstrate that B7-deficient T cells are highly susceptible to immune suppression by WT Tregs and refute the hypothesis that B7-CTLA-4 interaction between effector T cells and Tregs plays an essential role in Treg function.  相似文献   

4.
A number of apoptotic stimuli produce a different response by CD4(+) regulatory and effector lymphocytes. So far, little is known concerning the sensitivity of CD4(+) regulatory T cells (Treg) to genotoxic agents. Observations from a mouse model suggest that Treg are more resistant to DNA damage compared to CD4(+) T effector cells (Teff). By flow cytometry we analysed the apoptotic response to genotoxic stimuli in culture, comparing Treg and Teff. CD4(+) regulatory lymphocytes appeared to be more resistant than CD4(+) effector lymphocytes. Results of costaining experiments for CD45RA suggest that this dissimilarity is not related to the differentiation to a CD45RA negative phenotype. Further, neither the antiapoptotic protein Bcl-2 nor Bcl-xL were found to be expressed in greater amounts by Treg compared to Teff. The differential sensitivity of Treg and Teff to DNA-damage inducing agents may be of clinical relevance in cancer therapy. ? 2011 International Society for Advancement of Cytometry.  相似文献   

5.
HIV-1-specific CD4(+) T cells are qualitatively dysfunctional in the majority of HIV-1-infected individuals and are thus unable to effectively control viral replication. The current study extensively details the maturational phenotype of memory CD4(+) T cells directed against HIV-1 and CMV. We find that HIV-1-specific CD4(+) T cells are skewed to an early central memory phenotype, whereas CMV-specific CD4(+) T cells generally display a late effector memory phenotype. These differences hold true for both IFN-gamma- and IL-2-producing virus-specific CD4(+) T cells, are present during all disease stages, and persist even after highly active antiretroviral therapy (HAART). In addition, after HAART, HIV-1-specific CD4(+) T cells are enriched for CD27(+)CD28(-)-expressing cells, a rare phenotype, reflecting an early intermediate stage of differentiation. We found no correlation between differentiation phenotype of HIV-1-specific CD4(+) T cells and HIV-1 plasma viral load or HIV-1 disease progression. Surprisingly, HIV-1 viral load affected the maturational phenotype of CMV-specific CD4(+) T cells toward an earlier, less-differentiated state. In summary, our data indicate that the maturational state of HIV-1-specific CD4(+) T cells cannot be a sole explanation for loss of containment of HIV-1. However, HIV-1 replication can affect the phenotype of CD4(+) T cells of other specificities, which might adversely affect their ability to control those pathogens. The role for HIV-1-specific CD4(+) T cells expressing CD27(+)CD28(-) after HAART remains to be determined.  相似文献   

6.
In vivo studies have shown that regulatory CD4(+) T cells regulate conventional CD4(+) T cell responses to self- and environmental Ags. However, it remains unclear whether regulatory CD4(+) T cells control CD8(+) T cell responses to self, directly, or indirectly by decreasing available CD4(+) T cell help. We have developed an experimental mouse model in which suppressive and helper T cells cannot mediate their functions. The mouse chimeras generated were not viable and rapidly developed multiple organ autoimmunity. These features were correlated with strong CD8(+) T cell activation and accumulation in both lymphoid and nonlymphoid organs. In vivo Ab treatment and secondary transfer experiments demonstrated that regulatory CD4(+) T cells play an important direct role in the prevention of peripheral CD8(+) T cell-mediated autoimmunity.  相似文献   

7.
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity.  相似文献   

8.
Germinal center (GC) reaction is a T cell-dependent process in which activated B cells mature to produce high-affinity Abs and differentiate into memory B cells. The GC microenvironment is almost exclusively reserved for the optimal Ag-specific B cell clonal expansion, selection, and maturation, but lack significant conventional CD4(+) T cell responses. The mechanisms that ensure such a focused B cell response in the GC are not known. In this study, we report that human CD4(+)CD57(+) T cells, which are the major helper T cells in GCs, actively suppress the activation of conventional CD4(+) T cells, particularly Th1 cells, via a direct contact-dependent mechanism and soluble mediators. Our findings demonstrate that GC T cells are unique regulatory cells that provide critical help signals for B cell response but suppress conventional effector T cells in the same local environment.  相似文献   

9.
In this study we examined the immunological parameters underlying the natural immunity to inhaled nonpathogenic proteins. We addressed this question by examining the effect of intranasal exposure to OVA in both wild-type mice and mice reconstituted with OVA-TCR transgenic CD4+ T cells. Intranasal administration of OVA induced an initial phase of activation during which CD4+ T cells were capable of proliferating and producing cytokines. Although many of the OVA-specific CD4+ T cells were subsequently depleted from the lymphoid organs, a stable population of such T cells survived but remained refractory to antigenic rechallenge. The unresponsive state was not associated with immune deviation due to selective secretion of Th1- or Th2-type cytokines, and the presence of regulatory CD8+ T cells was not required. Moreover, neutralization of the immunosuppressive cytokines IL-10 and TGF-beta did not abrogate the induction of tolerance. Inhibition of the interaction of T cells with CD86, but not CD80, at the time of exposure to intranasal Ag prevented the development of unresponsiveness, while selective blockade of CTLA-4 had no effect. Our results suggest that intranasal exposure to Ags results in immunological tolerance mediated by functionally impaired CD4+ T cells via a costimulatory pathway that requires CD86.  相似文献   

10.
Disease progression of feline immunodeficiency virus (FIV) infection is characterized by up-regulation of B7.1 and B7.2 costimulatory molecules and their ligand CTLA4 on CD4(+) and CD8(+) T cells. The CD4(+)CTLA4(+)B7(+) phenotype described in FIV(+) cats is reminiscent of CD4(+)CD25(+)CTLA4(+) cells, a phenotype described for immunosuppressive T regulatory (Treg) cells. In the present study, we describe the phenotypic and functional characteristics of CD4(+)CD25(+) T cells in PBMC and lymph nodes (LN) of FIV(+) and control cats. Similar to Treg cells, feline CD4(+)CD25(+) but not CD4(+)CD25(-) T cells directly isolated from LN of FIV(+) cats do not produce IL-2 and fail to proliferate in response to mitogen stimulation. Unstimulated CD4(+)CD25(+) T cells from FIV(+) cats significantly suppress the proliferative response and the IL-2 production of Con A-stimulated autologous CD4(+)CD25(-) T cells compared with unstimulated CD4(+)CD25(+) T cells from FIV(-) cats. Flow-cytometric analysis confirmed the apparent activation phenotype of the CD4(+)CD25(+) cells in LN of chronically FIV(+) cats, because these cells showed significant up-regulation of expression of costimulatory molecules B7.1, B7.2, and CTLA4. These FIV-activated, anergic, immunosuppressive CD25(+)CTLA4(+)B7(+)CD4(+) Treg-like cells may contribute to the progressive loss of T cell immune function that is characteristic of FIV infection.  相似文献   

11.
12.
During an immune response a small number of rare Ag-specific clones proliferate extensively and decline, leaving a residual population for long-term memory. TCR transgenic (tg) CD4 T cells have been used widely to study the primary and memory response in vivo. We show here that naive TCR tg CD4 T cells from the DO11.10 strain transferred into wild type (wt) BALB/c recipients and not stimulated declined rapidly at the same rate as those primed in vivo by Ag. In the same recipients wt CD4 T cells survived. There was no evidence of an inherent defect in the tg T cells, which survived well when returned to DO11.10 recipients. Surprisingly, wt CD4 T cells declined rapidly in the same DO11.10 hosts. By depleting wt recipients of NK cells or CD8+ cells, the speed of reduction was slowed by half; rapid destruction was prevented completely by combing the two treatments. In contrast, preimmunization accelerated the loss of tg T cells. The results suggested that tg CD4 T cells were actively rejected by both NK and CD8 T cell responses. We consider whether, despite extensive backcrossing, tg T cells may retain genetic material (minor histocompatibility Ags) flanking the construct that compromises their survival in wt recipients.  相似文献   

13.
Following inoculation of Ag into the anterior chamber (a.c.), systemic tolerance develops that is mediated in part by Ag-specific efferent CD8(+) T regulatory (Tr) cells. This model of tolerance is called a.c.-associated immune deviation. The generation of the efferent CD8(+) Tr cell in a.c.-associated immune deviation is dependent on IL-10-producing, CD1d-restricted, invariant Valpha14(+) NKT (iNKT) cells. The iNKT cell subpopulations are either CD4(+) or CD4(-)CD8(-) double negative. This report identifies the subpopulation of iNKT cells that is important for induction of the efferent Tr cell. Because MHC class II(-/-) (class II(-/-)) mice generate efferent Tr cells following a.c. inoculation, we conclude that conventional CD4(+) T cells are not needed for the development of efferent CD8(+) T cells. Furthermore, Ab depletion of CD4(+) cells in both wild-type mice (remove both conventional and CD4(+) NKT cells) and class II(-/-) mice (remove CD4(+) NKT cells) abrogated the generation of Tr cells. We conclude that CD4(+) NKT cells, but not the class II molecule or conventional CD4(+) T cells, are required for generation of efferent CD8(+) Tr cells following Ag introduction into the eye. Understanding the mechanisms that lead to the generation of efferent CD8(+) Tr cells may lead to novel immunotherapy for immune inflammatory diseases.  相似文献   

14.
CD8(+) T cells are critical for the clearance of acute polyomavirus infection and the prevention of polyomavirus-induced tumors, but the antigen-presenting cell(s) involved in generating polyomavirus-specific CD8(+) T cells have not been defined. We investigated whether dendritic cells and macrophages are permissive for polyomavirus infection and examined their potential for inducing antiviral CD8(+) T cells. Although dendritic cells and macrophages both supported productive polyomavirus infection, dendritic cells were markedly more efficient at presenting the immunodominant viral epitope to CD8(+) T cells. Additionally, infected dendritic cells, but not infected macrophages, primed anti-polyomavirus CD8(+) T cells in vivo. Treatment with Flt3 ligand, a hematopoietic growth factor that dramatically expands the number of dendritic cells, markedly enhanced the magnitude of virus-specific CD8(+) T-cell responses during acute infection and the pool of memory anti-polyomavirus CD8(+) T cells. These findings suggest that virus-infected dendritic cells induce polyomavirus-specific CD8(+) T cells in vivo and raise the potential for their use as cellular adjuvants to promote CD8(+) T cell surveillance against polyomavirus-induced tumors.  相似文献   

15.
The nonobese diabetic (NOD) mouse, a spontaneous animal model for insulin-dependent diabetes mellitus, displays a tendency in common with human diabetic populations to develop autoimmune thyroiditis although incidence and severity of thyroid lesions vary widely among different colonies around the world. A congenic strain of NOD mice bearing I-Ak on a NOD background (NOD-H2(h4)) has recently been derived and displays a much greater tendency to develop thyroiditis and autoantibodies to mouse thyroglobulin (MTg) although it is free of diabetes. Both thyroid infiltrates and autoantibody formation are accelerated and enhanced in NOD-H2(h4) mice by increased iodine intake. The effect of increased iodine intake on NOD mice themselves has not been directly investigated although a recent study of these animals given high or low doses of iodine showed no follicular destruction unless the mice were first rendered goitrous by iodine deprivation. We found that dietary iodine increased both the incidence and the severity of thyroid lesions in our NOD mice although autoantibodies to MTg were absent. NOD background genes appear to be essential for the development of these lesions, which were maximal after 4 weeks of iodine administration and showed no significant regression when the iodine was stopped. Furthermore, our studies show for the first time that both CD4(+) and CD8(+) T cells are necessary for the development of this accelerated but essentially spontaneous murine thyroid disease.  相似文献   

16.
The number of virus-specific CD8 T cells increases substantially during an acute infection. Up to 90% of CD8 T cells are virus specific following lymphocytic choriomeningitis virus (LCMV) infection. In contrast, studies identifying virus-specific CD4 T cell epitopes have indicated that CD4 T cells often recognize a broader array of Ags than CD8 T cells, consequently making it difficult to accurately quantify the total magnitude of pathogen-specific CD4 T cell responses. In this study, we show that CD4 T cells become CD11a(hi)CD49d(+) after LCMV infection and retain this expression pattern into memory. During the effector phase, all the LCMV-specific IFN-γ(+) CD4 T cells display a CD11a(hi)CD49d(+) cell surface expression phenotype. In addition, only memory CD11a(hi)CD49d(+) CD4 T cells make IFN-γ after stimulation. Furthermore, upon secondary LCMV challenge, only CD11a(hi)CD49d(+) memory CD4 T cells from LCMV-immune mice undergo proliferative expansion, demonstrating that CD11a(hi)CD49d(+) CD4 T cells are truly Ag specific. Using the combination of CD11a and CD49d, we demonstrate that up to 50% of the CD4 T cells are virus specific during the peak of the LCMV response. Our results indicate that the magnitude of the virus-specific CD4 T cell response is much greater than previously recognized.  相似文献   

17.
Defects in immune regulation have been implicated in the pathogenesis of diabetes in mouse and in man. In vitro assays using autologous regulatory (Treg) and responder effector (Teff) T cells have shown that suppression is impaired in diabetic subjects. In this study, we addressed whether the source of this defect is intrinsic to the Treg or Teff compartment of diabetic subjects. We first established that in type 1 diabetes (T1D) individuals, similar levels of impaired suppression were seen, irrespective of whether natural (nTreg) or adaptive Treg (aTreg) were present. Then using aTreg, we examined the ability of T1D aTreg to suppress Teff of healthy controls, as compared with the ability of control aTreg to suppress Teff of diabetic subjects. Taking this approach, we found that the aTregs from T1D subjects function normally in the presence of control Teff, and that the T1D Teff were resistant to suppression in the presence of control aTreg. This escape from regulation was seen with nTreg as well and was not transferred to control Teff coincubated with T1D Teff. Thus, the "defective regulation" in T1D is predominantly due to the resistance of responding T cells to Treg and is a characteristic intrinsic to the T1D Teff. This has implications with respect to pathogenic mechanisms, which underlie the development of disease and the target of therapies for T1D.  相似文献   

18.
The role of CD4 T cell help in primary and secondary CD8 T cell responses to infectious pathogens remains incompletely defined. The primary CD8 T response to infections was initially thought to be largely independent of CD4 T cells, but it is not clear why some primary, pathogen-specific CD8 T cell responses are CD4 T cell dependent. Furthermore, although the generation of functional memory CD8 T cells is CD4 T cell help dependent, it remains controversial when the "help" is needed. In this study, we demonstrated that CD4 T cell help was not needed for the activation and effector differentiation of CD8 T cells during the primary response to vaccinia virus infection. However, the activated CD8 T cells showed poor survival without CD4 T cell help, leading to a reduction in clonal expansion and a diminished, but stable CD8 memory pool. In addition, we observed that CD4 T cell help provided during both the primary and secondary responses was required for the survival of memory CD8 T cells during recall expansion. Our study indicates that CD4 T cells play a crucial role in multiple stages of CD8 T cell response to vaccinia virus infection and may help to design effective vaccine strategies.  相似文献   

19.
CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) suppress T cell function and protect rodents from autoimmune disease. Regulation of T(reg) during an immune response is of major importance. Enhanced survival of T(reg) is beneficial in autoimmune disease, whereas increased depletion by apoptosis is advantageous in cancer. We show here that freshly isolated FACS-sorted T(reg) are highly sensitive toward CD95-mediated apoptosis, whereas other T cell populations are resistant to CD95-induced apoptosis shortly after isolation. In contrast, TCR restimulation of T(reg) in vitro revealed a reduced sensitivity toward activation-induced cell death compared with CD4(+)CD25(-) T cells. Thus, the apoptosis phenotype of T(reg) is unique in comparison to other T cells, and this might be further explored for novel therapeutic modulations of T(reg).  相似文献   

20.
The control of acute and chronic Mycobacterium tuberculosis infection is dependent on CD4(+) T cells. In a variety of systems CD8(+) T cell effector responses are dependent on CD4(+) T cell help. The development of CD8(+) T cell-mediated immune responses in the absence of CD4(+) T cells was investigated in a murine model of acute tuberculosis. In vitro and in vivo, priming of mycobacteria-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells. Infiltration of CD8(+) T cells into infected lungs of CD4(-/-) or wild-type mice was similar. IFN-gamma production by lung CD8(+) T cells in CD4(-/-) and wild-type mice was also comparable, suggesting that emergence of IFN-gamma-producing mycobacteria-specific CD8(+) T cells in the lungs was independent of CD4(+) T cell help. In contrast, cytotoxic activity of CD8(+) T cells from lungs of M. tuberculosis-infected mice was impaired in CD4(-/-) mice. Expression of mRNA for IL-2 and IL-15, cytokines critical for the development of cytotoxic effector cells, was diminished in the lungs of M. tuberculosis-infected CD4(-/-) mice. As tuberculosis is frequently associated with HIV infection and a subsequent loss of CD4(+) T cells, understanding the interaction between CD4(+) and CD8(+) T cell subsets during the immune response to M. tuberculosis is imperative for the design of successful vaccination strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号