首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has been suggested that sequestration of parasitized red blood cells might contribute to the pathogenesis of cerebral malaria (CM), by hypoxia causing either: (i) compensatory vasodilatation with a resultant increase in the brain volume; or (ii) enhancing cytokine-induced nitric oxide (NO) production via induction of inducible NO synthase (iNOS). Available evidence suggests that cerebral oedema is the initiating and probably the most important factor in the pathogenesis of murine CM. The relevance of this model in the study of the pathogenesis of CM has been questioned. However, a closer look at published reports on both human and murine CM, in this review, suggests that the pathogenesis of the murine model of CM might reflect more closely the CM seen in African children than that seen in Asian adults. It is also proposed that the role of iNOS induction during CM is protective: that the primary purpose of iNOS induction is to inhibit the side effects of brain indoleamine 2,3-dioxygenase (IDO) induction and quinolinic acid accumulation during hypoxia.  相似文献   

2.
Here, Ian Clark and Bill Cowden summarize new evidence suggesting that nitric oxide (NO) generated by inducible NO synthase (iNOS) provides a functional link between the previously competing approaches to malarial disease pathogenesis: ischaemic hypoxia and NO. When combined with the newly recognized roles of iNOS in renal and pulmonary function and glucose metabolism, synergy between inflammatory cytokines and hypoxia in iNOS induction provides a framework to help explain, at a molecular level, the differences in the pathology seen in falciparum and vivax malaria. Thus sequestration, through localized hypoxia, might contribute to pathology by enhancing cytokine-induced iNOS. Generalized hypoxia might have the same effect.  相似文献   

3.
Cerebral malaria (CM) has a high mortality rate and incidence of neurological sequelae in survivors. Hypoxia and cytokine expression in the brain are two mechanisms thought to contribute to the pathogenesis of CM. The cytokines interferon (IFN)-γ and lymphotoxin (LT)-α and the chemokine CXCL10 are essential for the development of CM in a mouse model. Furthermore, serum IFN-γ protein levels are higher in human CM than in controls, and CXCL10 is elevated in both serum and cerebrospinal fluid in Ghanaian paediatric CM cases. Astrocytes actively participate in CNS pathologies, becoming activated in response to various stimuli including cytokines. Astrocyte activation also occurs in murine and human CM. We here determined the responsiveness of mouse and human astrocytes to IFN-γ and LT-α, with the aim of further elucidating the role of astrocytes in CM pathogenesis. Initially we confirmed that Ifn-γ and Cxcl10 are expressed in the brain in murine CM, and that the increased Cxcl10 expression is IFN-γ-dependant. IFN-γ induced CXCL10 production in human and murine astrocytes in vitro. The degree of induction was increased synergistically in the presence of LT-α. IFN-γ induced the expression of receptors for LT-α, while LT-α increased the expression of the receptor for IFN-γ, in the astrocytes. This cross-induction may explain the synergistic effect of the two cytokines on CXCL10 production. Expression of these receptors also was upregulated in the brain in murine CM. The results suggest that astrocytes contribute to CM pathogenesis by producing CXCL10 in response to IFN-γ and LT-α.  相似文献   

4.
Malaria is one of the most important global health problems, potentially affecting more than one third of the world's population. Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, yet its pathogenesis remains incompletely understood. In this review, we discuss some of the principal pathogenic events that have been described in murine models of the disease and relate them to the human condition. One of the earliest events in CM pathogenesis appears to be a mild increase in the permeability to protein of the blood-brain barrier. Recent studies have shown a role for CD8+T cells in mediating damage to the microvascular endothelium and this damage can result in the leakage of cytokines, malaria antigens and other potentially harmful molecules across the blood-brain barrier into the cerebral parenchyma. We suggest that this, in turn, leads to the activation of microglia and the activation and apoptosis of astrocytes. The role of hypoxia in the pathogenesis of cerebral malaria is also discussed, with particular reference to the local reduction of oxygen consumption in the brain as a consequence of vascular obstruction, to cytokine-driven changes in glucose metabolism, and to cytopathic hypoxia. Interferon-gamma, a cytokine known to be produced in malaria infection, induces increased expression, by microvascular endothelial cells, of the haem enzyme indoleamine 2,3-dioxygenase, the first enzyme in the kynurenine pathway of tryptophan metabolism. Enhanced indoleamine 2,3-dioxygenase expression leads to increased production of a range of biologically active metabolites that may be part of a tissue protective response. Damage to astrocytes may result in reduced production of the neuroprotectant molecule kynurenic acid, leading to a decrease in its ratio relative to the neuroexcitotoxic molecule quinolinic acid, which might contribute to some of the neurological symptoms of cerebral malaria. Lastly, we discuss the role of other haem enzymes, cyclooxygenase-2, inducible nitric oxide synthase and haem oxygenase-1, as potentially being components of mechanisms that protect host tissue against the effects of cytokine- and leukocyte-mediated stress induced by malaria infection.  相似文献   

5.
6.
Pathogenesis of hypoxic pulmonary hypertension is initiated by oxidative injury to the pulmonary vascular wall. Because nitric oxide (NO) can contribute to oxidative stress and because the inducible isoform of NO synthase (iNOS) is often upregulated in association with tissue injury, we hypothesized that iNOS-derived NO participates in the pulmonary vascular wall injury at the onset of hypoxic pulmonary hypertension. An effective and selective dose of an iNOS inhibitor, L-N6-(1-iminoethyl)lysine (L-NIL), for chronic peroral treatment was first determined (8 mg/l in drinking water) by measuring exhaled NO concentration and systemic arterial pressure after LPS injection under ketamine+xylazine anesthesia. A separate batch of rats was then exposed to hypoxia (10% O2) and given L-NIL or a nonselective inhibitor of all NO synthases, N(G)-nitro-L-arginine methyl ester (L-NAME, 500 mg/l), in drinking water. Both inhibitors, applied just before and during 1-wk hypoxia, equally reduced pulmonary arterial pressure (PAP) measured under ketamine+xylazine anesthesia. If hypoxia continued for 2 more wk after L-NIL treatment was discontinued, PAP was still lower than in untreated hypoxic controls. Immunostaining of lung vessels showed negligible iNOS presence in control rats, striking iNOS expression after 4 days of hypoxia, and return of iNOS immunostaining toward normally low levels after 20 days of hypoxia. Lung NO production, measured as NO concentration in exhaled air, was markedly elevated as early as on the first day of hypoxia. We conclude that transient iNOS induction in the pulmonary vascular wall at the beginning of chronic hypoxia participates in the pathogenesis of pulmonary hypertension.  相似文献   

7.
8.
Treatment of cerebral malaria, a complication of the world's most significant parasitic disease, remains problematic due to lack of understanding of its pathogenesis. Metabolic changes, along with cytokine expression alterations and blood cell sequestration in the brain, have previously been reported during severe disease in human infection and mouse models leading to the "cytopathic hypoxia" and "sequestration" theories of pathogenesis. Here, to determine the robustness of the metabolic changes and their relationship to disease development, we investigated changes in cerebral metabolic markers in a mouse model of cerebral malaria (CM) in wildtype (C57BL/6) and cytokine knockout (TNF(-/-), IFNgamma(-/-) and LTalpha(-/-)) mice using multinuclear magnetic resonance spectroscopy. Mice susceptible to CM (wildtype, TNF(-/-)) showed decreased cerebral glucose use, decreased Krebs cycle metabolism and decreased high-energy phosphates. Conversely, mice resistant to CM (IFNgamma(-/-), LTalpha(-/-)) showed little sign of these effects, despite identical levels of parasitemia. Previously reported changes in lactate were shown to be strain dependent. Elevated glutamine and decreased phosphorylation potential emerged as robust metabolic markers of susceptibility, further implicating the trytophan/NAD(+) pathway in disease development. Thus these metabolic changes are firmly linked both to the immune system response to malaria and to the occurrence of pathogenic changes in experimental CM.  相似文献   

9.
新生大鼠缺血缺氧后脑内一氧化氮合酶的动态表达   总被引:3,自引:0,他引:3  
实验采用生后14天Wistar大鼠缺血缺氧(HI)动物模型。用免疫组织化学方法观察HI复苏(HI/R0后前脑一氧化氮合酶动态表达。结果显示;神经元一氧化氮合酶(nNOS)阳性神经元主要分布于新生大鼠大脑皮层的Ⅲ-Ⅳ层。尾状核,隔核及嗅结节,HI/R早期其表达水平无明显变化;复苏48小时及5天后,可分别在右侧大脑顶皮层或右侧大脑顶皮层和尾状核区出现梗塞灶,该区nNOS阳性神经元明显减少,而诱导型一氧化氮合酶(iNOS)阳性细胞在HI/R后12小时始现于损伤侧的侧脑室;随时间的推移在损伤侧缰核,皮层,尾状核以及丘脑背外侧核,丘脑腹侧核可见iNOS阳性细胞逐渐增多并染色加深,用识别单核巨噬细胞的克隆ED1单克隆抗体检测可见ED1阳性细胞出现的时间和在脑区的分布与iNOS阳性细胞相似,本实验提示,在局灶性脑缺血缺氧早期,脑内NO的释放不依赖于nNOS阳性神经元或iNOS阳性细胞,而在局灶性脑缺血缺氧晚期,iNOS阳性细胞产生的NO可能参与了脑损伤的过程。  相似文献   

10.

Background

Neuroinflammation is a key cascade after cerebral ischemia. Excessive production of proinflammatory mediators in ischemia exacerbates brain injury. Cold-inducible RNA-binding protein (CIRP) is a newly discovered proinflammatory mediator that can be released into the circulation during hemorrhage or septic shock. Here, we examine the involvement of CIRP in brain injury during ischemic stroke.

Methods

Stroke was induced by middle cerebral artery occlusion (MCAO). In vitro hypoxia was conducted in a hypoxia chamber containing 1% oxygen. CIRP and tumor necrosis factor-α (TNF-α) levels were assessed by RT-PCR and Western blot analysis.

Results

CIRP is elevated along with an upregulation of TNF-α expression in mouse brain after MCAO. In CIRP-deficient mice, the brain infarct volume, induction of TNF-α, and activation of microglia are markedly reduced after MCAO. Using microglial BV2 cells, we demonstrate that hypoxia induces the expression, translocation, and release of CIRP, which is associated with an increase of TNF-α levels. Addition of recombinant murine (rm) CIRP directly induces TNF-α release from BV2 cells and such induction is inhibited by neutralizing antisera to CIRP. Moreover, rmCIRP activates the NF-κB signaling pathway in BV2 cells. The conditioned medium from BV2 cells exposed to hypoxia triggers the apoptotic cascade by increasing caspase activity and decreasing Bcl-2 expression in neural SH-SY5Y cells, which is inhibited by antisera to CIRP.

Conclusion

Extracellular CIRP is a detrimental factor in stimulating inflammation to cause neuronal damage in cerebral ischemia.

General significance

Development of an anti-CIRP therapy may benefit patients with brain ischemia.  相似文献   

11.
Cerebral malaria (CM) is a major life-threatening complication of Plasmodium falciparum infection in humans, responsible for up to 2 million deaths annually. The mechanisms underlying the fatal cerebral complications are still not fully understood. Many theories exist on the aetiology of human CM. The sequestration hypo-thesis suggests that adherence of parasitized erythrocytes to the cerebral vasculature leads to obstruction of the microcirculation, anoxia or metabolic disturbances affecting brain function, resulting in coma. This mechanism alone seems insufficient to explain all the known features of CM. In this review we focus on another major school of thought, that CM is the result of an over-vigorous immune response originally evolved for the protection of the host. Evidence in support of this second hypothesis comes from studies in murine malaria models in which T cells, monocytes, adhesion molecules and cytokines, have been implicated in the development of the cerebral complications. Recent studies of human CM also indicate a role for the immune system in the neurological complications. However, it is likely that multiple mechanisms are involved in the induction of cerebral complications and both the presence of parasitized erythrocytes in the central nervous system (CNS) and immunopathological processes contribute to the pathogenesis of CM. Most studies examining immunopathological responses in CM have focused on reactions occurring primarily in the systemic circulation. However, these also do not fully account for the development of cerebral complications in CM. In this review we summarize results from human and mouse studies that demonstrate morphological and functional changes in the resident glial cells of the CNS. The degree of immune activation and degeneration of glial cells was shown to reflect the extent of neurological complications in murine cerebral malaria. From these results we highlight the need to consider the potentially important contribution within the CNS of glia and their secreted products, such as cytokines, in the development of human CM.  相似文献   

12.
13.
The aim of the study was to investigate the effect of iNOS expression on eNOS and nNOS functional activity in porcine cerebral arteries. iNOS was induced in pig basilar arteries using lipopolysaccharide (LPS). Arteries expressing iNOS generated NO and relaxed when challenged with L-arginine (30 microM), an effect that was reduced by treatment with dexamethasone (coincubated with LPS) and prevented by the iNOS inhibitor 1400 W (administered 10 min prior to precontraction). eNOS was activated by A23187 and was found to be impaired in arteries that had iNOS induced (A23187 1 microM relaxation: control 110+/-8%, LPS-treated 50+/-16% ; p<0.05, N=5-6). This was due mainly to reduced formation of NO by A23187 (NO concentration in response to A23187 1 microM: control 25+/-6 nM, LPS-treated 0.8+/-1.2 nM; p<0.001, N=5-6), in addition to a small reduction in the vasodilator response to the NO-donors NOC-22 and SIN-1. Cerebral vasodilation produced by stimulation of intramural nitrergic nerves was impaired in arteries that had iNOS induced, and this was reversed by 1400 W (control 23+/-4% relaxation, LPS-treated 11+/-1% relaxation, LPS plus 1400 W 10 microM treated 25+/-2% relaxation; p<0.01 for control versus LPS, N=6). It is concluded that the induction of iNOS in cerebral arteries reduces NO-mediated vasodilation initiated by eNOS and by nNOS, primarily by modulation of NO formation.  相似文献   

14.
15.
Several murine and human monocytic cell lines and monocyte-derived macrophages (MDM) from healthy volunteers were studied to compare their production of nitric oxide (NO) and induction of iNOS following endotoxin treatment. Although the human cells were sensitive to endotoxin and responded well by producing TNF-alpha and matrix metalloproteases (MMP), there was no induction of iNOS expression or NO production by any of these cells. Murine cells, however, produced large amounts of NO and expressed iNOS following similar endotoxin stimulation. We investigated the expression of PKC isotypes in all human and murine cell lines as well as in MDM, and found that the human cells lacked PKC-eta while the murine counterparts lacked PKC-beta1. Subsequently, human cells that were transfected with PKC-eta were found to make large quantities of NO following endotoxin exposure, an observation not seen in untransfected cells. We propose that PKC-eta is essential for the development of the iNOS positive phenotype in human monocytic cells, and may be responsible for the development of a number of inflammatory related conditions. As such it may be a suitable target for therapeutic intervention.  相似文献   

16.
Decreased cerebral blood flow (CBF) has been observed following the resuscitation from neonatal hypoxic-ischemic injury, but its mechanism is not known. We address the hypothesis that reduced CBF is due to a change in nitric oxide (NO) and superoxide anion O(2)(-) balance secondary to endothelial NO synthase (eNOS) uncoupling with vascular injury. Wistar rats (7 day old) were subjected to cerebral hypoxia-ischemia by unilateral carotid occlusion under isoflurane anesthesia followed by hypoxia with hyperoxic or normoxic resuscitation. Expired CO(2) was determined during the period of hyperoxic or normoxic resuscitation. Laser-Doppler flowmetry was used with isoflurane anesthesia to monitor CBF, and cerebral perivascular NO and O(2)(-) were determined using fluorescent dyes with fluorescence microscopy. The effect of tetrahydrobiopterin supplementation on each of these measurements and the effect of apocynin and N(omega)-nitro-L-arginine methyl ester (L-NAME) administration on NO and O(2)(-) were determined. As a result, CBF in the ischemic cortex declined following the onset of resuscitation with 100% O(2) (hyperoxic resuscitation) but not room air (normoxic resuscitation). Expired CO(2) was decreased at the onset of resuscitation, but recovery was the same in normoxic and hyperoxic resuscitated groups. Perivascular NO-induced fluorescence intensity declined, and O(2)(-)-induced fluorescence increased in the ischemic cortex after hyperoxic resuscitation up to 24 h postischemia. L-NAME treatment reduced O(2)(-) relative to the nonischemic cortex. Apocynin treatment increased NO and reduced O(2)(-) relative to the nonischemic cortex. The administration of tetrahydrobiopterin following the injury increased perivascular NO, reduced perivascular O(2)(-), and increased CBF during hyperoxic resuscitation. These results demonstrate that reduced CBF follows hyperoxic resuscitation but not normoxic resuscitation after neonatal hypoxic-ischemic injury, accompanied by a reduction in perivascular production of NO and an increase in O(2)(-). The finding that tetrahydrobiopterin, apocynin, and L-NAME normalized radical production suggests that the uncoupling of perivascular NOS, probably eNOS, due to acquired relative tetrahydrobiopterin deficiency occurs after neonatal hypoxic-ischemic brain injury. It appears that both NOS uncoupling and the activation of NADPH oxidase participate in the changes of reactive oxygen concentrations seen in cerebral hypoxic-ischemic injury.  相似文献   

17.
Cerebral malaria (CM) is a life-threatening complication of Plasmodium falciparum malaria that continues to be a major global health problem. Brain vascular dysfunction is a main factor underlying the pathogenesis of CM and can be a target for the development of adjuvant therapies for the disease. Vascular occlusion by parasitised red blood cells and vasoconstriction/vascular dysfunction results in impaired cerebral blood flow, ischaemia, hypoxia, acidosis and death. In this review, we discuss the mechanisms of vascular dysfunction in CM and the roles of low nitric oxide bioavailability, high levels of endothelin-1 and dysfunction of the angiopoietin-Tie2 axis. We also discuss the usefulness and relevance of the murine experimental model of CM by Plasmodium berghei ANKA to identify mechanisms of disease and to screen potential therapeutic interventions.  相似文献   

18.
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. Using murine models of malaria, we found much greater up-regulation of a number of chemokine mRNAs, including those for CXCR3 and its ligands, in the brain during fatal murine CM (FMCM) than in a model of non-CM. Expression of CXCL9 and CXCL10 RNA was localized predominantly to the cerebral microvessels and in adjacent glial cells, while expression of CCL5 was restricted mainly to infiltrating lymphocytes. The majority of mice deficient in CXCR3 were found to be protected from FMCM, and this protection was associated with a reduction in the number of CD8+ T cells in brain vessels as well as reduced expression of perforin and FasL mRNA. Adoptive transfer of CD8+ cells from C57BL/6 mice with FMCM abrogated this protection in CXCR3-/- mice. Moreover, there were decreased mRNA levels for the proinflammatory cytokines IFN-gamma and lymphotoxin-alpha in the brains of mice protected from FMCM. These data suggest a role for CXCR3 in the pathogenesis of FMCM through the recruitment and activation of pathogenic CD8+ T cells.  相似文献   

19.
20.
Malaria remains a major global health problem and cerebral malaria (CM) is one of the most serious complications of this disease. Recent years have seen important advances in our understanding of the pathogenesis of cerebral malaria. Parasite sequestration, a hallmark of this syndrome, is thought to be solely responsible for the pathological process. However, this phenomenon cannot explain all aspects of the pathogenesis of CM. The use of an animal model, Plasmodium berghei ANKA in mice, has allowed the identification of specific pathological components of CM. Although multiple pathways may lead to CM, an important role for CD8+ T cells has been clarified. Other cells, including platelets, and mediators such as cytokines also have an important role. In this review we have focused on the role of T cells, and discuss what remains to be studied to understand the pathways by which these cells mediate CM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号