首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. In vitro development of Eimeria canadensis from cattle was studied in monolayer cultures of various bovine cell lines grown on coverslips in Leighton tubes. Excysted sporozoites were used for inoculation of the cell cultures. Sporozoites entered the host cells within a few minutes, but apart from a reduction in the number of refractile bodies, changed little in appearance during the first 9 days. Beginning at 91/2 days postinoculation, sporozoites developed into sporozoite-shaped schizonts or, less frequently, transformed into trophozoites. Sporozoite-shaped schizonts with as many as 8 nuclei were observed transforming into spheroid schizonts. At 111/2 days, intermediate schizonts had a characteristic single mass of refractile granules and 60–80 nuclei. Deep invaginations, which resulted in the formation of several blastophores, usually occurred when schizonts had about 100 nuclei. Merozoites were formed as a result of radial outgrowth from the surface of spheroid schizonts as well as of blastophores. Mature merozoites were seen 1st after 13 days.  相似文献   

2.
SYNOPSIS. Monolayer established cell line cultures of bovine kidney (Madin-Darby) and human intestine (Intestine 407), as well as embryonic bovine tracheal and embryonic spleen cell line cultures were inoculated with E. auburnensis sporozoites and observed for a maximum of 22 days. Mature 1st generation schizonts developed in the kidney, tracheal and spleen cells. In the intestine cells, trophozoites were seen in 3 of 4 experiments, but schizonts were not found. Sporozoites penetrated cells, beginning within a few minutes after inoculation. Penetration was usually accomplished within 10 seconds, and the body of the sporozoite underwent a slight constriction as it passed thru the host cell membrane. Some sporozoites left cells. Numerous intracellular sporozoites were observed in kidney, tracheal and spleen cultures. Crescent bodies were seen in the parasitophorous vacuole as early as 1 day after inoculation. At this time, the nuclei of most intracellular sporozoites had changed from vesicular to compact. Beginning 4 days after inoculation, enlarged sporozoites and parasites having a sporozoite shape, but with 2-5 nuclei, were frequently seen. These enlarged sporozoites and sporozoite-shaped schizonts evidently transformed into trophozoites and spheroidal schizonts by means of lateral outpocketings. Few trophozoites were seen. More immature schizonts developed in kidney cells than in the other cell types. The numbers of mature schizonts observed in kidney and tracheal cells were similar, but development occurred less consistently in the latter. Few immature and mature schizonts developed in spleen cells. Mature schizonts, first seen 9 days after inoculation, were considerably smaller than those reported from calves. Some motile merozoites were seen; evidently no development beyond these occurred. The nucleus and nucleolus of host cells were enlarged; this enlargement was not as pronounced as in infections in calves. Multiple host cell nuclei were frequently observed. Degenerative changes in the cultured cells and in the parasites usually occurred, beginning 9-17 days after inoculation; these were more pronounced in the spleen cells than in the others.  相似文献   

3.
SYNOPSIS. Monolayer primary and secondary cultures of embryonic bovine kidney, spleen, intestinal and testicle cells, and secondary cultures of embryonic bovine thymus, maintained in lactalbumin hydrolysate, Earle's balanced salt solution and ovine serum were observed for a maximum of 21 days after inoculation of E. bovis sporozoites. The sporozoites entered the cells in all of these cultures but underwent development only in primary cultures of kidney and intestinal cells and in secondary cultures of kidney, spleen, thymus, intestinal, and testicle cells. In acellular media, the sporozoites retained motility no longer than 21 hr. In the cell cultures, free motile sporozoites were seen for as long as 18 days after inoculation. Sporozoites entered cells anterior end first; the process of penetration required a few seconds to about a minute. Sporozoites were also observed leaving host cells. Intracellular sporozoites were first seen 3 min after inoculation; they were observed at various intervals up to 18 days after inoculation. In transformation of sporozoites into trophozoites a marked change in size and appearance of the nucleus took place before the change in shape of the body occurred. Trophozoites were first found 7 days after inoculation, multinucleate schizonts after 8 days, and schizonts with merozoites after 14 days. Schizonts containing merozoites were seen only in kidney, spleen, and thymus cells. The mature schizonts were smaller and represented a much lower proportion of the total number than in comparable stages of infections in calves. Schizonts with many nuclei occurred in intestinal cells; the most advanced stage seen in testicle cells was the binucleate schizont. Nuclear and cytoplasmic changes were observed in the infected cells.  相似文献   

4.
SYNOPSIS. Cell lines of embryonic lamb trachea (LETr), lamb thyroid (LETh), and bovine liver (BEL) as well as an established cell line of Madin-Darby bovine kidney (MDBK) were used in a study of the in vitro development of Eimeria crandallis from sheep. Excysted sporozoites were inoculated into Leighton tubes containing coverslips with monolayers of the different cell types. Coverslips were examined with phase-contrast and interference-contrast at various intervals up to 20 days after inoculation; thereafter the monolayers were fixed and stained in various ways. Freshly excysted sporozoites, with 2–10 spheroidal refractile bodies, entered all of the cell types in relatively small numbers; intracellular sporozoites were first seen 2 min after inoculation. After 24 hr, most intracellular sporozoites had only 1 or 2 refractile bodies. Before and during transformation of sporozoites, the nucleus and peripheral nucleolus increased markedly in size. Transformation resulted in usually spheroid but sometimes ellipsoid trophozoites. Trophozoites were seen first 3–4 days, and binucleate schizonts at 4–5 days after inoculation. Immature schizonts increased considerably in size and eventually had large numbers of nuclei. Some of the parasites became lobulated and the lobules often separated to form individual schizonts. In BEL, LETr and LETh cells, mature schizonts, up to 150 μm in diameter, were seen first 11–14 days after inoculation. The BEL cells were the most favorable for development. Merozoites were formed by a budding process from the surface of the schizonts as well as from blastophores. Some merozoites were seen leaving mature schizonts, but no further development was observed. Merozoites frequently were motile and had a sharply bent posterior end. Marked nuclear and cytoplasmic changes were observed in parasitized cells.  相似文献   

5.
SYNOPSIS. Monolayer cell line cultures of ovine trachea, thyroid, thymus, and kidney cells, as well as an established cell line (Madin-Darby) of bovine kidney cells, were inoculated with sporozoites of Eimeria ninakohlyakimovae and observed for a maximum of 24 days. Sporozoites were seen penetrating cells within 5 minutes after inoculation, as well as 2 and 3 days after inoculation, and leaving cells 3 days after inoculation. Transformation from sporozoites to trophozoites occurred by a widening or by a lateral outpocketing of the sporozoite body. Trophozoites and schizonts were first seen 3 days after inoculation in all ovine cell types. Large numbers of immature schizonts were observed, but only an estimated 0.4–4.3% of these became mature in the different kinds of cells. Usually, mature schizonts were first seen 10–11 days after inoculation in the ovine cells, but they sometimes occurred as early as 8 days. More mature schizonts were seen in the ovine kidney and trachea cells than in the others; the smallest number occurred in the bovine cells. The nucleoli of cells harboring large schizonts in each type of culture were enlarged and the chromatin clumps normally seen in the nuclei of non-infected cells were not visible. The cytoplasm of some infected cells was vacuolated. The formation of merozoites occurred by a budding process from blastophores, from the surface of schizonts, and/or from infoldings and invaginations of this surface. Merozoites were observed leaving host cells, but were not seen penetrating new cells. Intracellular first-generation merozoites were observed 13 and 15 days after inoculation in lamb trachea and kidney cells, respectively. No evidence of further development of such merozoites was found.  相似文献   

6.
SYNOPSIS. Monolayer primary cultures of cells from bovine embryonic intestine (BEInt), kidney (BEK), spleen (BES), and thyroid (BETy) and cell line cultures of embryonic bovine trachea (EBTr) and synovium (BESy) as well as established cell line cultures of bovine kidney (Madin-Darby, MDBK), human intestine (Int 407) and Syrian hamster kidney (BHK) were inoculated with freshly excysted sporozoites of Eimeria alabamensis and observed for 4–5 days. Sporozoites penetrated all cell types; during the 1st 24 hr, intracellular sporozoites, trophozoites and binucleate schizonts were seen in all cell cultures. Mature schizonts were more numerous in BES and MDBK cells than in the others. Large schizonts, 14.2 (11–18.5) by 10.2 μ (8.5–11), with 6–14 short, stubby merozoites (each with 2 refractile bodies) occurred at 2 and 3 days in all cells except BESy, Int 407, and BHK. Small schizonts, 9.7 (5.5–13) by 6 μ (5–8.5), with 6–10 long, slender merozoites (each with 2 refractile bodies) were found 3 days after inoculation in all cell types. At 4 days, some intracytoplasmic merozoites and a few intranuclear 2nd generation trophozoites were found. After 4 days post-inoculation, intracellular parasites were rarely seen and these were apparently degenerate. Development within the host cell nucleus, the normal site of development in the host animal, was observed infrequently in cell cultures. Intranuclear sporozoites, found no earlier than 2 days after inoculation, developed similarly to those in the cytoplasm, and small intranuclear schizonts with 6–10 merozoites (each with 2 refractile bodies) occurred after 3 days in culture.  相似文献   

7.
SUMMARY. The endogenous development of the life cycle of Eimeria alabamensis Christensen, 1941, occurs in the nucleus of the intestinal cells of cattle. Calves were killed at various intervals after inoculation with infective oöcysts to study the endogenous cycle. Excysted sporozoites were found in the contents or scrapings from the walls of rumen, omasum, small intestine, cecum, and colon. They were found in the cytoplasm of intestinal epithelium at 2 days. Schizonts were found in the nuclei beginning at 2 days, but the number was low by the 8th day. Merozoite numbers usually ranged between 16 and 32. Some host nuclei contained as many as 48 or more, but these appeared to be the result of more than one schizont merging in the same host nucleus. Merozoites were slender, spindle-shaped bodies while still in the schizont walls, but were short with bluntly rounded tips when found in intracellular spaces and crypts. Gametocytes were found as early as the 4th day. Most of the stages of gametogenesis were limited to the lowest third of the small intestine, but in heavy infections some were also found in the cecum and upper colon. Microgametocytes were multinucleate and were more densely stained than the uninucleate macrogametocytes. The ratio of macrogametocytes to microgametocytes in 100 gametes was 78: 22. Oöcysis with "shells" were found in sections of the lower 20 feet of the ileum on the 6th day, which coincided with the shortest prepatent period reported previously. As many as three schizonts or microgametocytes or four or five macrogametocytes or oöcysts could be found in the same host nucleus. The variations in shape of the oöcysts appeared to be dependent on the number of oöcysts crowded into each nucleus.  相似文献   

8.
SYNOPSIS. A pure strain of Isospora felis derived from a single oocyst was used to study the endogenous cycle. One and a half to two-month-old laboratory-reared, coccidia-free kittens were used thruout the study. The endogenous stages occurred in the epithelial cells of the distal parts of the villi in the ileum and occasionally duodenum and jejunum. All stages lay above the host cell nucleus. There were 3 asexual generations. The 1st generation schizonts were 11–30 by 10–23 μ when mature and contained 16–17 banana-shaped merozoites 11–15 by 3–5 μ. They became mature in 96 or sometimes in 120 hours. The 1st generation merozoites entered new host cells, rounded up and formed 2nd generation schizonts. These formed within themselves 2–10 or more spindle-shaped bodies resembling 1st generation merozoites in shape and size. These were 2nd generation merozoites. They were uninucleate 120 hours after inoculation, but by 144 hours they became larger, multinucleate and some lost their elongate shape and became ovoid. They were then 3rd generation schizonts. They were 12–16 by 4–5 μ. Each formed up to 6 or more banana-shaped merozoites 6–8 by 1–2 μ. The 3rd generation schizonts and merozoites developed within the same host cell and parasitophorous vacuole as the 2nd generation schizonts and merozoites. Mature schizonts containing only 3rd generation merozoites appeared 144 hours after inoculation, were most abundant 168 hours after inoculation, and might be present as late as 216 hours after inoculation. They were 14–36 by 13–22 μ and contained 36 to more than 70 merozoites. The 3rd generation merozoites entered the sexual cycle. The mature microgametocytes were 24–72 by 18–32 μ and contained a central residuum and a large number of microgametes 5–7 by 0.8 μ with 2 posteriorly-directed flagella. The mature macrogametes were 16–22 by 8–13 μ. Gametogony occurred 144–216 hours after inoculation. The prepatent period was 168–192 hours and the patent period 10–11 days. Peak oocyst production occurred on the 6th day of the patent period.  相似文献   

9.
SYNOPSIS The development of 1st generation schizonts of Eimeria callospermophili was studied with cell cultures and with experimentally infected host animals, Spermophilus armatus. Sporozoite-shaped schizonts each had 5-10 nuclei and all of the organelles of the sporozoite; each nucleus had a nucleolus and an associated Golgi apparatus. In stages immediately preceding merozoite formation, an intranuclear spindle apparatus with conical polar areas were observed near the outer margin of each nucleus. Two centrioles, each having 9 single peripheral tubules and one central tubule, were observed near each pole in some specimens. Merozoite formation began internally, with anlagen of 2 merozoites developing near each nucleus. The inner membrane of the merozoites first appeared as 2 dense thickenings adjacent to the polar cones and centrioles; subpellicular microtubules appeared simultaneously. Two anterior annuli and the conoid formed between the 2 thickenings. Vesicles, possibly of Golgi origin, were located next to the forming inner membrane. As the forming merozoites underwent elongation, a rhoptries anlage, a Golgi apparatus, refractile bodies, and mitochondria were incorporated into each. Sporozoite-shaped schizonts with merozoite anlagen transformed into spheroid or ovoid schizonts; at this time the conoid, rhoptries, micronemes, and the inner membrane of the pellicle gradually disappeared; several small refractile bodies were formed from the larger one. When development was about 1/3 complete, the immature merozoites began to grow outward from the surface of the schizont. In this phase of development, the single surface membrane of the schizont became the outer membrane of the merozoite's pellicle, and additional organelles, including the nucleus, were incorporated. Finally, the merozoites became pinched off, leaving a residual body. Development in cell cultures and host tissues was similar. This type of schizogony, previously undescribed in Eimeria, is compared with corresponding stages of development in other species of Eimeria and Sporozoa.  相似文献   

10.
SYNOPSIS. The schizonts of Haemoproteus columbae resemble the exoerythrocytic schizonts of avian Plasmodium in their fine structure. Haemoproteus infects endothelial cells and grows several hundredfold in volume, destroying the cytoplasm and nucleus of the host cell. The schizont's plasma membrane is trilamellar with a dense outer lamella. Some schizonts have micropores in their plasma membranes, but there is no evidence for ingestion thru them. Instead, numerous vesicles and channels fill the host cell cytoplasm and give its plasma membrane and periparasitic vacuolar membrane the appearance of active pinocytosis. The parasite's membrane shows no sign of pinocytosis, indicating that it probably feeds by diffusion. The growing schizont has numerous mitochondria, nuclei, and ribosome-rich cytoplasm which contains electron-lucent vacuoles and clefts. The latter appear to be artifacts of fixation.  相似文献   

11.
ABSTRACT The schizogonic development of Leucocytozoon smithi in the liver of experimentally infected turkey poults was examined by electron microscopy. Following intraperitoneal injection, sporozoites migrated to the liver and entered hepatic cells to become intracellular trophozoites. Three to four days post inoculation (PI), trophozoites underwent asexual multiple fission known as merogony or schizogony. Two generations of schizonts were observed. The primary or first generation schizonts, abundant on day 4 PI, appeared as interconnected cytoplasmic masses (pseudocytomeres). Each pseudocytomere was enclosed by a membranous vacuole and contained varying numbers of nuclei. As nuclear division and growth of the schizonts continued, larger discrete cytoplasmic masses or cytomeres were formed with rhoptries and multiple nuclei in various stages of division. Synchronous multiple cytoplasmic cleavage of the schizont resulted in the formation of numerous uninucleate merozoites. Second generation schizonts, which developed from hepatic merozoites released from primary schizonts, were abundant in hepatocytes on day 6 PI. Although tissue samples from liver, lung, spleen, kidney, intestine, brain, blood vessels and lymph nodes were examined, schizogonous forms were observed in liver only. No megaloschizonts were detected in any host tissue examined. Schizogonic development was completed by day 7 PI as merozoites developed into gametocytes within mononuclear phagocytes.  相似文献   

12.
The schizogonic development of Leucocytozoon smithi in the liver of experimentally infected turkey poults was examined by electron microscopy. Following intraperitoneal injection, sporozoites migrated to the liver and entered hepatic cells to become intracellular trophozoites. Three to four days post inoculation (PI), trophozoites underwent asexual multiple fission known as merogony or schizogony. Two generations of schizonts were observed. The primary or first generation schizonts, abundant on day 4 PI, appeared as interconnected cytoplasmic masses (pseudocytomeres). Each pseudocytomere was enclosed by a membranous vacuole and contained varying numbers of nuclei. As nuclear division and growth of the schizonts continued, larger discrete cytoplasmic masses or cytomeres were formed with rhoptries and multiple nuclei in various stages of division. Synchronous multiple cytoplasmic cleavage of the schizont resulted in the formation of numerous uninucleate merozoites. Second generation schizonts, which developed from hepatic merozoites released from primary schizonts, were abundant in hepatocytes on day 6 PI. Although tissue samples from liver, lung, spleen, kidney, intestine, brain, blood vessels and lymph nodes were examined, schizogonous forms were observed in liver only. No megaloschizonts were detected in any host tissue examined. Schizogonic development was completed by day 7 PI as merozoites developed into gametocytes within mononuclear phagocytes.  相似文献   

13.
SYNOPSIS. Schizonts of E. nieschulzi lie in a vacuole within the host cell. After nuclear division the cell membrane invaginates forming merozoites. Differentiation of the pellicle and other organelles occurs while merozoites are still attached to the schizont cytoplasm. Merozoites have a pellicle thickened at the anterior end to form a polar ring. Radiating posteriorly from the ring, directly beneath the pellicle, are about 25 microtubules. Within the polar ring is a dense conoid. Extending posteriorly from within the conoid is a paired organelle. The paired organelle varies in size and shape in each generation of merozoites. Numerous toxonemes occupy the anterior half of the merozoites. Two paranuclear bodies are present in 1st generation merozoites. One or 2 granular bodies were seen in the anterior end of 2nd generation merozoites. In 3rd generation merozoites 6 or more granular bodies were seen anterior to the nucleus. Each merozoite has a single nucleus containing diffuse chromatin material. Elongate mitochondria and glycogen granules are present. The vacuole surrounding mature merozoites contains residual cytoplasm of the schizont and some granular material. Microvilli project into the vacuole from the host cell membrane.  相似文献   

14.
Pathogen–host interactions are modulated at multiple levels by both the pathogen and the host cell. Modulation of host cell functions is particularly intriguing in the case of the intracellular Theileria parasite, which resides as a multinucleated schizont free in the cytosol of the host cell. Direct contact between the schizont plasma membrane and the cytoplasm enables the parasite to affect the function of host cell proteins through direct interaction or through the secretion of regulators. Structure and dynamics of the schizont plasma membrane are poorly understood and whether schizont membrane dynamics contribute to parasite propagation is not known. Here we show that the intracellular Theileria schizont can dynamically change its shape by actively extending filamentous membrane protrusions. We found that isolated schizonts bound monomeric tubulin and in vitro polymerized microtubules, and monomeric tubulin polymerized into dense assemblies at the parasite surface. However, we established that isolated Theileria schizonts free of host cell microtubules maintained a lobular morphology and extended filamentous protrusions, demonstrating that host microtubules are dispensable both forthe maintenance of lobular schizont morphology and for the generation of membrane protrusions. These protrusions resemble nanotubes and extend in an actin polymerization‐dependent manner; using cryo‐electron tomography, we detected thin actin filaments beneath these protrusions, indicating that their extension is driven by schizont actin polymerization. Thus the membrane of the schizont and its underlying actin cytoskeleton possess intrinsic activity for shape control and likely function as a peri‐organelle to interact with and manipulate host cell components.  相似文献   

15.
SYNOPSIS. Cell lines or established cell lines of bovine, ovine or human origin and primary cells from whole embryos of groundsquirrels were used in a study of the in vitro development of Eimeria callospermophili and E. bilamellata from the Uinta ground squirrel, Spermophilus armatus. Monolayers in Leighton tube cultures were inoculated with sporozoites of either of these 2 species and examined with phase-contrast microscopy at various intervals. After such examination, coverslips were fixed in Schaudinn's or Zenker's fluid and variously stained. E. callospermophi sporozoites penetrated cells and underwent development to mature 1st generation schizonts in most cell types. At different times after inoculation, both species formed sporozoite-shaped schizonts, which later became spheroidal. Intracellular movements of sporo zoite-shaped schizonts of E. callospermophili were observed and such schizonts penetrated cells when freed by mechanical disintegration of the host cells. Merozoites were formed at the periphery of the schizont in both species. Mature 1st generation schizonts of E. callospermophili, with 6–14 merozoites, were first seen 15 hr after inoculation; the corresponding values for E. bilamellata were 12–27 merozoites and 4 days. Merozoites of both had anterior and posterior refractile bodies. Exposure to a trypsin-bile solution stimulated motility in merozoites of E. callospermophili. Second generation trophozoites and immature schizonts of E. callospermophili were seen in cultures of primary cells of whole ground-squirrel embryos 20–24 hr and 44–48 hr, respectively, after inoculation of sporozoites.  相似文献   

16.
The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state.  相似文献   

17.
Bank voles (Clethrionomys glareolus) were infected by stomach tube with Frenkelia sporocysts from the faeces of buzzards (Buteo buteo). The voles were sacrificed at regular intervals and their livers examined electronmicroscopically. Seven days p.i. developmental stages of Frenkelia could be detected in liver parenchymal cells. The youngest schizonts detected are enveloped by a pellicle consisting of two membranes. This pellicle, which is in direct contact with the host cell mitochondria, shows marked invaginations which increase with the development of the schizont. A parasitophorous vacuole is not detectable. In developing schizonts numerous sections through nuclei with nucleic spindles and merozoite anlagen (dome-shaped) structures) are visible. It is not clear whether there are several nuclei or a section through one large and lobed nucleus. Within the merozoite anlagen the conoid and the subpellicular microtubules are formed first. By the prolongation of the dome-shaped structures towards the posterior pole, the nucleus and the other newly formed cell organelles are incorporated into the forming merozoite. The posterior pole of the merozoite still remains open at this stage of development. With increasing differentiation the merozoites become lancet-shaped, their apical poles bing always directed towards the periphery of the schizont. The outer membrane of the pellicle of the schizont forms the outer part of the pellicle of the merozoites by invaginating around them. At this stage of development the inner membrane of the pellicle of the schizont is no longer detectable. Thus the typical pellicle of the motile stages of sporozoaonsisting of three membranes is formed. In the centre of the merozoites which lie freely in the liver cell a residual body is present. The host cell reacts against the parasites by forming a thick border of mitochondria and distinct endoplasmic reticulum.  相似文献   

18.
The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.  相似文献   

19.
Endogenous stages of Eimeria tuskegeensis were studied in experimentally infected cotton rats, Sigmodon hispidus. Almost all parasites were located on the basilar side of the nucleus in epithelial cells on the sides and tips of villi of the small intestine. The endogenous cycle consisted of three generations of schizogony followed by gametogony. First-, second-, third-generation schizonts could be distinguished by time of appearance, size and shape of the schizont, and number, size, shape, and arrangement of merozoites. Immature gametogonous stages appeared to 84 hr postinoculation (PI) and developed into mature microgametocytes and macrogametes by 96 hr PI. Microgametocytes had a mono-centric type of development. Intermediate macrogametes had small, basophilic wall-forming bodies and mature macrogametes had large, eosinophilic wall-forming bodies. It was not possible to determine whether these were two distinct types of wall-forming bodies or whether they were different stages of a single type. Two nuclei were seen in the host's epithelial cells parasitized by schizonts, microgematocytes, macrogametes, and oocysts. This binucleate condition was apparently parasite-induced.  相似文献   

20.
SYNOPSIS. The development of Sarcocystis cruzi Hasselmann (syn. S. fusiformis Railliet) meronts was studied in seven 7- to 10-day-old calves killed 4, 7, 11, 15, 22, 25 and 28 days postinoculation (DPI) with 5 × 107 sporocysts from feces of coyotes. No meronts were found 4 and 7 DPI. Young and intermediate meronts with 1–16 nuclei were found in endothelial cells of arteries in mesenteric lymph nodes, but not in kidneys 11 DPI. Mature meronts were noted in endothelial cells of arteries, arterioles, or capillaries of many organs of calves killed 15 to 25 DPI. No first-generation meronts were found 28 DPI. By electron microscopy, all stages of the first-generation merogony were found free within the host cell cytoplasm and not within a parasitophorous vacuole. The appearance of intranuclear spindles preceded the formation of merozoites by endopolygeny. Mature meronts measured 41.0 × 17.5 (34–50 × 15–24) μm, contained ~ 100–350 merozoites, and had 2 to 4 relatively small residual bodies, 2.8 μm in diameter. Merozoites measured 6.3 × 1.5 (5.5–7 × 1 μm) and contained most of the organelles characteristically found in coccidian merozoites. Micropores were observed in merozoites, but not in young and intermediate meronts. Merozoites were seen free in the lumen of blood vessels, in intracellular areas, and free within the host cell cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号