首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the biosynthesis of normal and mutant forms of myeloperoxidase (MPO) in order to gain insights into the critical features of normal biogenesis of MPO. The expression of wild-type and mutant forms of MPO in a stably transfected cell line devoid of endogenous MPO as well as in established human promyelocytic cell lines has allowed understanding of several features of MPO biosynthesis. It is clear that heme insertion into apoproMPO is necessary for proper folding, egress from the endoplasmic reticulum (ER), and eventual entry into the maturation pathway. In addition, molecular chaperones calreticulin and calnexin interact with normal MPO precursors in a sequential and regulated fashion. Studies of naturally occurring mutants, specifically missense mutations underlying inherited MPO deficiency, and mutations in putatively important residues in MPO have highlighted special features of the ER quality control system in the context of MPO biosynthesis. With identification of additional genotypes of MPO deficiency and the recent solution of MPO crystal structure at 1.8 A, this approach provides a powerful technique to assess structure-function relationships in MPO that are likely applicable to other members of the family of animal peroxidases.  相似文献   

2.
Exclusively synthesized by normal neutrophil and monocyte precursor cells, myeloperoxidase (MPO) functions not only in host defense by mediating efficient microbial killing but also can contribute to progressive tissue damage in chronic inflammatory states such as atherosclerosis. The biosynthetic precursor, apoproMPO, is processed slowly in the ER, undergoing cotranslational N-glycosylation, transient interactions with the molecular chaperones calreticulin and calnexin, and heme incorporation to generate enzymatically active proMPO that is competent for export into the Golgi. After exiting the Golgi the propeptide is removed prior to final proteolytic processing in azurophil granules, resulting in formation of a symmetric MPO homodimer linked by a disulfide bond. Some proMPO escapes granule targeting and becomes constitutively secreted to the extracellular environment. Although the precise mechanism is unknown, the pro-segment is required for normal processing and targeting, as propeptide-deleted MPO precursor is either degraded or constitutively secreted. Characterizing the molecular consequences of naturally occurring mutations that cause inherited MPO deficiency provides unique insight into the structural determinants of MPO involved in biosynthesis, processing and targeting.  相似文献   

3.
The heme protein myeloperoxidase (MPO) contributes critically to O(2)-dependent neutrophil antimicrobial activity. Two Japanese adults were identified with inherited MPO deficiency because of mutations at Arg-499 or Gly-501, conserved residues near the proximal histidine in the heme pocket. Because of the proximity of these residues to a critical histidine in the heme pocket, we examined the biosynthesis, function, and spectral properties of the peroxidase stably expressed in human embryonic kidney cells. Biosynthesis of normal MPO by human embryonic kidney cells faithfully mirrored events previously identified in cells expressing endogenous MPO. Mutant apopro-MPO was 90 kDa and interacted normally with the molecular chaperones ERp57, calreticulin, and calnexin in the endoplasmic reticulum. However, mutant precursors were not proteolytically processed into subunits of MPO, although secretion of the unprocessed precursors occurred normally. Although delta-[(14)C]aminolevulinic acid incorporation demonstrated formation of pro-MPO in both mutants, neither protein was enzymatically active. The Soret band for each mutant was shifted from the normal 430 to approximately 412 nm, confirming that heme was incorporated but suggesting that the number of covalent bonds or other structural aspects of the heme pocket were disrupted by the mutations. These studies demonstrate that despite heme incorporation, mutations in the heme environs compromised the oxidizing potential of MPO.  相似文献   

4.
GNE myopathy is a heterogeneous group of ultrarare neuromuscular disorders caused by mutations in the GNE gene. An estimated prevalence of 1~21/1,000,000 leads to a deficiency of data and a lack of availability of samples to conduct clinical research on this neuromuscular disorder. Although GNE, which is the mutated gene responsible for the disease, is well known as the key enzyme in the biosynthesis pathway of sialic acid, the clinicopathological-genetic spectrum of GNE mutant patients is still unclear and expanding. This study presents ten unrelated patients with GNE myopathy, discovering five novel missense mutations. Clinical, electrophysiological, imaging, pathological and genetic data are presented in a retrospective manner. Interestingly, several patients in the cohort were found to have peripheral neuropathy and inflammatory cell infiltration in muscle biopsies, which have seldom been reported. This study, conducted by a neuromuscular centre in China, is the first attempt to highlight these abnormal clinicopathological features and associate them with genetic mutations in GNE myopathy.  相似文献   

5.
Aceruloplasminemia is an inherited neurodegenerative disease characterized by parenchymal iron accumulation secondary to loss-of-function mutations in the ceruloplasmin gene. To elucidate the molecular pathogenesis of aceruloplasminemia, the biosynthesis of a missense mutant ceruloplasmin (P177R) occurring in an affected patient was examined. Chinese hamster ovary cells transfected with cDNAs encoding secreted and glycosylphosphatidylinositol (GPI)-linked wild-type or P177R human ceruloplasmin were examined by pulse-chase metabolic labeling. These experiments, as well as immunofluorescent analysis and N-linked glycosylation studies, indicate that both the secreted and GPI-linked forms of the P177R mutant are retained in the endoplasmic reticulum (ER). The P177R mutation resides within a novel motif, which is repeated six times in human ceruloplasmin and is conserved in the homologous proteins hephaestin and factor VIII. Analysis of additional mutations in these motifs suggests a critical role for this region in ceruloplasmin trafficking and indicates that substitution of the arginine residue is critical to the ER retention of the P177R mutant. Metabolic labeling of transfected Chinese hamster ovary cells with (64)Cu indicates that the P177R mutant is retained in the ER as an apoprotein and that copper is incorporated into both secreted and GPI-linked ceruloplasmin as a late event in the secretory pathway. Taken together, these studies reveal new insights into the determinants of holoceruloplasmin biosynthesis and indicate that aceruloplasminemia can result from retention of mutant ceruloplasmin within the early secretory pathway.  相似文献   

6.
The mammalian B-cell receptor-associated proteins of 29 and 31 kDa (BAP29 and BAP31) are conserved integral membrane proteins that have reported roles in endoplasmic reticulum (ER) quality control, ER export of secretory cargo, and programmed cell death. In this study we investigated the yeast homologs of BAP29 and BAP31, known as Yet1p and Yet3p, to gain insight on cellular function. We found that Yet1p forms a complex with Yet3p (Yet complex) and that complex assembly was important for subunit stability and proper ER localization. The Yet complex was not efficiently packaged into ER-derived COPII vesicles and therefore does not appear to act as an ER export receptor. Instead, a fraction of the Yet complex was detected in association with the ER translocation apparatus (Sec complex). Specific mutations in the Sec complex or Yet complex influenced these interactions. Moreover, associations between the Yet complex and Sec complex were increased by ER stress and diminished when protein translocation substrates were depleted. Surprisingly, yet1Δ and yet3Δ mutant strains displayed inositol starvation-related growth defects. In accord with the biochemical data, these growth defects were exacerbated by a combination of certain mutations in the Sec complex with yet1Δ or yet3Δ mutations. We propose a model for the Yet-Sec complex interaction that places Yet1p and Yet3p at the translocation pore to manage biogenesis of specific transmembrane secretory proteins.  相似文献   

7.
《Journal of lipid research》2017,58(12):2348-2364
Lipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocyte metabolism, and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known about the roles of lipin-1 in human adipocyte physiology. Apparently, fat distribution and weight is normal in humans carrying LPIN1 inactivating mutations, but a detailed analysis of adipose tissue appearance and functions in these patients has not been available so far. In this study, we performed a systematic histopathological, biochemical, and gene expression analysis of adipose tissue biopsies from human patients harboring LPIN1 biallelic inactivating mutations and affected by recurrent episodes of severe rhabdomyolysis. We also explored the adipogenic differentiation potential of human mesenchymal cell populations derived from lipin-1 defective patients. White adipose tissue from human LPIN1 mutant patients displayed a dramatic decrease in lipin-1 protein levels and PAP activity, with a concomitant moderate reduction of adipocyte size. Nevertheless, the adipose tissue develops without obvious histological signs of lipodystrophy and with normal qualitative composition of storage lipids. The increased expression of key adipogenic determinants such as SREBP1, PPARG, and PGC1A shows that specific compensatory phenomena can be activated in vivo in human adipocytes with deficiency of functional lipin-1.  相似文献   

8.
Biosynthesis of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the ER has been extensively studied, whereas the molecular events during the transport of GPI-APs from the ER to the cell surface are poorly understood. Here, we established new mutant cell lines whose surface expressions of GPI-APs were greatly decreased despite normal biosynthesis of GPI-APs in the ER. We identified a gene responsible for this defect, designated PGAP2 (for Post-GPI-Attachment to Proteins 2), which encoded a Golgi/ER-resident membrane protein. The low surface expression of GPI-APs was due to their secretion into the culture medium. GPI-APs were modified/cleaved by two reaction steps in the mutant cells. First, the GPI anchor was converted to lyso-GPI before exiting the trans-Golgi network. Second, lyso-GPI-APs were cleaved by a phospholipase D after transport to the plasma membrane. Therefore, PGAP2 deficiency caused transport to the cell surface of lyso-GPI-APs that were sensitive to a phospholipase D. These results demonstrate that PGAP2 is involved in the processing of GPI-APs required for their stable expression at the cell surface.  相似文献   

9.
Myeloperoxidase (MPO) is an important enzyme in innate immunity. Here, we describe the first identified Chinese individual with complete MPO deficiency. The proband was ascertained through routine automated complete blood analysis. Analysis of MPO function and immunogenicity revealed that MPO levels in neutrophils were significantly decreased. Mutational analysis revealed a novel premature termination codon p.(Trp602*) in exon 11 of the MPO gene, which was inherited in an autosomal recessive manner. We demonstrated that nonsense-mediated mRNA decay is involved in the molecular pathology of MPO deficiency in this case. The study of MPO deficiency can be helpful in understanding the function and biosynthesis mechanisms of MPO.  相似文献   

10.
Inherited retinal disorders (IRDs) result in severe visual impairments in children and adults. A challenge in the field of retinal degenerations is identifying mechanisms of photoreceptor cell death related to specific genetic mutations. Mutations in the gene TULP1 have been associated with two forms of IRDs, early-onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). TULP1 is a cytoplasmic, membrane-associated protein shown to be involved in transportation of newly synthesized proteins destined for the outer segment compartment of photoreceptor cells; however, how mutant TULP1 causes cell death is not understood. In this study, we provide evidence that common missense mutations in TULP1 express as misfolded protein products that accumulate within the endoplasmic reticulum (ER) causing prolonged ER stress. In an effort to maintain protein homeostasis, photoreceptor cells then activate the unfolded protein response (UPR) complex. Our results indicate that the two major apoptotic arms of the UPR pathway, PERK and IRE1, are activated. Additionally, we show that retinas expressing mutant TULP1 significantly upregulate the expression of CHOP, a UPR signaling protein promoting apoptosis, and undergo photoreceptor cell death. Our study demonstrates that the ER-UPR, a known mechanism of apoptosis secondary to an overwhelming accumulation of misfolded protein, is involved in photoreceptor degeneration caused by missense mutations in TULP1. These observations suggest that modulating the UPR pathways might be a strategy for therapeutic intervention.  相似文献   

11.

Background

ABCA3 transporter (ATP-binding cassette transporter of the A subfamily) is localized to the limiting membrane of lamellar bodies, organelles for assembly and storage of pulmonary surfactant in alveolar epithelial type II cells (AECII). It transports surfactant phospholipids into lamellar bodies and absence of ABCA3 function disrupts lamellar body biogenesis. Mutations of the ABCA3 gene lead to fatal neonatal surfactant deficiency and chronic interstitial lung disease (ILD) of children. ABCA3 mutations can result in either functional defects of the correctly localized ABCA3 or trafficking/folding defects where mutated ABCA3 remains in the endoplasmic reticulum (ER).

Methods

Human alveolar epithelial A549 cells were transfected with vectors expressing wild-type ABCA3 or one of the three ABCA3 mutant forms, R43L, R280C and L101P, C-terminally tagged with YFP or hemagglutinin-tag. Localization/trafficking properties were analyzed by immunofluorescence and ABCA3 deglycosylation. Uptake of fluorescent NBD-labeled lipids into lamellar bodies was used as a functional assay. ER stress and apoptotic signaling were examined through RT-PCR based analyses of XBP1 splicing, immunoblotting or FACS analyses of stress/apoptosis proteins, Annexin V surface staining and determination of the intracellular glutathion level.

Results

We demonstrate that two ABCA3 mutations, which affect ABCA3 protein trafficking/folding and lead to partial (R280C) or complete (L101P) retention of ABCA3 in the ER compartment, can elevate ER stress and susceptibility to it and induce apoptotic markers in the cultured lung epithelial A549 cells. R43L mutation, resulting in a functional defect of the properly localized ABCA3, had no effect on intracellular stress and apoptotic signaling.

Conclusion

Our data suggest that expression of partially or completely ER localized ABCA3 mutant proteins can increase the apoptotic cell death of the affected cells, which are factors that might contribute to the pathogenesis of genetic ILD.  相似文献   

12.
Prion diseases are fatal neurodegenerative disorders caused by aberrant metabolism of the cellular prion protein (PrPC). In genetic forms of these diseases, mutations in the globular C-terminal domain are hypothesized to favor the spontaneous generation of misfolded PrP conformers (including the transmissible PrPSc form) that trigger downstream pathways leading to neuronal death. A mechanistic understanding of these diseases therefore requires knowledge of the quality control pathways that recognize and degrade aberrant PrPs. Here, we present comparative analyses of the biosynthesis, trafficking, and metabolism of a panel of genetic disease-causing prion protein mutants in the C-terminal domain. Using quantitative imaging and biochemistry, we identify a misfolded subpopulation of each mutant PrP characterized by relative detergent insolubility, inaccessibility to the cell surface, and incomplete glycan modifications. The misfolded populations of mutant PrPs were neither recognized by ER quality control pathways nor routed to ER-associated degradation despite demonstrable misfolding in the ER. Instead, mutant PrPs trafficked to the Golgi, from where the misfolded subpopulation was selectively trafficked for degradation in acidic compartments. Surprisingly, selective re-routing was dependent not only on a mutant globular domain, but on an additional lysine-based motif in the highly conserved unstructured N-terminus. These results define a specific trafficking and degradation pathway shared by many disease-causing PrP mutants. As the acidic lysosomal environment has been implicated in facilitating the conversion of PrPC to PrPSc, our identification of a mutant-selective trafficking pathway to this compartment may provide a cell biological basis for spontaneous generation of PrPSc in familial prion disease.  相似文献   

13.

Background  

Human glucose 6-phosphate dehydrogenase (G6PD), active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP), providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins.  相似文献   

14.
Abstract

Carbonic anhydrase 2 (CA2) enzyme deficiency caused by CA2 gene mutations is an inherited disorder characterized by symptoms like osteopetrosis, renal tubular acidosis, and cerebral calcification. This study has collected the CA2 deficiency causal missense mutations and assessed their pathogenicity using diverse computational programs. The 3D protein models for all missense mutations were built, and analyzed for structural divergence, protein stability, and molecular dynamics properties. We found M-CAP as the most sensitive prediction method to measure the deleterious potential of CA2 missense mutations. Free energy dynamics of tertiary structure models of CA2 mutants with DUET, mCSM, and SDM based consensus methods predicted only 50% of the variants as destabilizing. Superimposition of native and mutant CA2 models revealed the minor structural fluctuations at the amino acid residue level but not at the whole protein structure level. Near native molecular dynamic simulation analysis indicated that CA2 causative missense variants result in residue level fluctuation pattern in the protein structure. This study expands the understanding of genotype-protein phenotype correlations underlying CA2 variant pathogenicity and presents a potential avenue for modifying the CA2 deficiency by targeting biophysical structural features of CA2 protein.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
Succinyl acetone (SA) was initially identified in the urine of patients with tyrosinemia type I, an autosomally recessive inherited disease. SA has been used to downregulate the activity of myeloperoxidase (MPO) through its specific inhibition of heme biosynthesis and to investigate the biological properties of MPO in the human myeloid leukemic (HL-60) cell line. The goal of this study is to evaluate the mutagenic potential of SA by determining the frequencies of somatic mutations in the hypoxanthine-guanine phosphoribosyl transferase (HPRT) reporter gene in HL-60 cells following treatment with the chemical. Treatments of HL-60 cells with 500 μmol/L SA for 72 h, a condition generally used to inhibit the MPO activity, resulted in a significantly increased HPRT mutant frequency (HPRT-Mf), compared with the control of untreated cells (47.25 × 10-6 versus 7.5 × 10-6, respectively, p <0.01). Treatment of the cells with lower doses of SA also led to an increase in HPRT-Mf but this was significant only with 200 μmol/L (28.67 × 10-6, p<0.05) and not with doses lower than 100 μmol/L (p0.05), compared with the control of untreated cells (7.5 × 10-6). These data show a dose–response increase in HPRT-Mf in HL-60 cells treated with SA, suggesting that this chemical causes mutations in the HPRT locus in these cells either directly or indirectly through its inhibition of the MPO activity.  相似文献   

16.
17.
The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP+/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted.  相似文献   

18.
Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.  相似文献   

19.
Inositol is a precursor of numerous phospholipids and signalling molecules essential for the cell. Schizosaccharomyces pombe is naturally auxotroph for inositol as its genome does not have a homologue of the INO1 gene encoding inositol-1-phosphate synthase, the enzyme responsible for inositol biosynthesis. In this work, we demonstrate that inositol starvation in S. pombe causes cell death with apoptotic features. This apoptotic death is dependent on the metacaspase Pca1p and is affected by the UPR transducer Ire1p. Previously, we demonstrated that calnexin is involved in apoptosis induced by ER stress. Here, we show that cells expressing a lumenal version of calnexin exhibit a 2-fold increase in the levels of apoptosis provoked by inositol starvation. This increase is reversed by co-expression of a calnexin mutant spanning the transmembrane domain and C-terminal cytosolic tail. Coherently, calnexin is physiologically cleaved at the end of its lumenal domain, under normal growth conditions when cells approach stationary phase. This cleavage suggests that the two naturally produced calnexin fragments are needed to continue growth into stationary phase and to prevent cell death. Collectively, our observations indicate that calnexin takes part in at least two apoptotic pathways in S. pombe, and suggest that the cleavage of calnexin has regulatory roles in apoptotic processes involving calnexin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号