首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
We analysed patterns of woody species richness in Pinus sylvestris and Fagus sylvatica forests in Catalonia (NE Spain) from forestry inventory databank in relation to climate and landscape structure. Both types of forests are found within the same climatic range, although they have been managed following somewhat different goals. Overall, woody species richness significantly increased when conditions get closer to the Mediterranean ones, with milder temperatures. Differences between the two types of forests arose when comparing the relationship between richness and forest patch size. Woody species richness increased in pine forests with patch size, while the opposite trend was observed in beech forests. This pattern is explained by the different behaviour of structural canopy properties, since leaf area index and canopy cover showed a steeper increase with increasing forest patch size in Fagus forests than in Pinus ones. Accordingly, richness decreased with canopy cover in Fagus plots, but not in Pinus ones. We suggest that these differences would be related to management history, which may have enhanced the preservation of beech stands in larger forest landscape units.  相似文献   

4.
Questions: Are there any sustainable or vulnerable habitats in which beech (Fagus crenata) forests could survive in Japan under 110 hypothetical climate change scenarios? Location: Six islands of Japan on which beech grows naturally. Methods: An ecological habitat model was used to simulate the potential habitat shifts of beech forests under 110 climate change scenarios. The amount of suitable habitat loss and gain was calculated with three migration options and risk surfaces. Vulnerable and sustainable habitats were identified to evaluate the potential risks and survival of beech forests. Results: The total areas of potential suitable habitats differed considerably depending on the future temperature and precipitation changes. Some areas on the Sea of Japan (SOJ) side showed higher probability of maintaining suitable habitats, whereas there were wider areas in which suitable habitats could not persist under any of the 110 climate change scenarios. Conclusions: The risk surfaces of the suitable habitats showed that decreases in precipitation along with increases in temperature reduced the total areas of suitable habitats. Increases in precipitation with increases in temperature of more than or equal to 2°C always reduce the areas of suitable habitats. Under increased precipitation with a temperature increase of <2°C, the areas of suitable habitats showed an increase, maintenance of the status quo or a decrease, depending on the size of the increase in precipitation. Beech forests in western Japan are predicted to be vulnerable to climate change, whereas some mountains on the SOJ side are predicted to be possible future refugia.  相似文献   

5.
The present study investigated the relationship between time since death and the morphological characteristics of fallen dead trees in a Nothofagus betuloides forest stand located on the island of Navarino (Chile). In this unmanaged forest, there were 399 m3 ha?1 of dead wood, which represented about half of the living tree volume. At the investigation site, 18 living trees were selected and increment cores were collected from them to build master ring‐width chronologies. Cross sections were also collected from 48 fallen dead trees. The samples collected were then assigned to observable decay classes and their death date was determined dendrochronologically. Cross‐dating techniques were used and it was found that the fallen dead trees cross‐dated significantly with standard chronologies. A year of death was successfully determined for 75% of the sampled fallen dead trees. However, this study demonstrated that, in the standard classification, the transition rate from one class of decay to another was highly variable. Furthermore, the inconsistencies found in the decay rates of the fallen dead trees demonstrated that the existing decay classification schemes were unsuitable for this type of forest stand and that the relationship between qualitatively assessed decay classes and the time since death of trees in this extreme environment was rather weak. In addition, the analysis of the time since death, in this old growth forest, was indicative of the persistence of dead wood on the forest floor in austral cold ecosystems and of its contribution to long‐term carbon storage.  相似文献   

6.
Aim Analysis of microclimate factors and physiological responses determining survival and growth of epiphytic bryophytes in the lower canopy and trunk space of north‐Andean cloud forests. Location Two cloud forests at 2000–2400 m in the northern Andes near Mérida, Venezuela. Methods Data‐logging of dry and wet‐season temperature, relative humidity (r.h.) and photosynthetically‐active radiation (PAR) for month‐long periods, and laboratory measurements of desiccation tolerance and light responses of selected epiphytic bryophytes. Results Rainfall averages 20 mm or less in January and February, and 200 mm or more from August to October, but is very variable at all seasons. The proportion of time ‘wet’ (continuous 100% r.h.) in the months sampled ranged from 8.5% to 52.2% or more; a dry/wet‐season range between 20% and 40% is probably commoner. The length of ‘wet’ and ‘dry’ periods approximated log‐normal distributions, with mid‐points for wet periods ranging from 2.8 to 10.7 h, and dry periods from 6.2 to 17.1 h. The longest recorded dry period was 143 h. Humidity typically rose during the night to > 90% r.h., reaching 100% for significant periods (implying cloudwater (fog) deposition) on about one night in two in all seasons. Of six bryophytes of pendulous growth form, all survived periods of at least a few days’ desiccation; most recovered better from high than low humidities. Measured 95% light‐saturation values ranged from 110 to 256 μmol m?2 s?1, somewhat but not greatly higher than ambient light levels Main conclusions Environmental conditions in the cloud forests are probably near‐optimal for epiphytic bryophytes, but in even the wettest forest these plants must tolerate at least short periods of drying at any time of year, and longer periods seasonally. Interception of cloudwater droplets from moving air is likely to be an important source of water for bryophytes of pendant and other diffuse life forms, especially in periods of low rainfall. Absorption of water from near‐saturated air is probably of little physiological significance. Bryophytes of these life‐forms are notably conspicuous in tropical‐montane cloud forests. They remain prominent into humid temperate regions such as southern Chile, New Zealand and Macaronesia, but progressively disappear at higher latitudes with the stresses of increasing seasonality.  相似文献   

7.
The optimal size of nature reserves has been debated for some time. Although edge and core habitats are often recognized, it is commonly assumed in theory and in studies of a particular habitat type that reserves or patches of different sizes have similar habitat structure. However, for older, highly fragmented landscapes it has been suggested that small areas are of conservation interest as high-quality remnants, whereas large areas are more degraded. We studied 49 randomly selected forest reserves in the size range 5–230 ha (typical for many highly fragmented landscapes) and 3653 sites of key habitat (unprotected deciduous broadleaf forest). Structures in forest that are generally correlated with value for biodiversity were measured, and reserve objectives were examined from declaration texts. Both the density of large trees and the density of dead wood (snags, logs) decreased with increasing reserve size. The mean size of identified key habitats was very small (1.6 ha). A botanical objective for establishment of reserves was more frequently used for smaller reserves. In contrast, cultural and especially recreational objectives were more commonly used when larger reserves were established, suggesting higher values for recreation in these reserves. For vascular plants, birds and beetles, a literature review indicated that small forest patches do not contain impoverished communities, but are often rich (per unit of area). Small reserves and key habitats have several disadvantages, but they are probably important components of reserve networks for biodiversity in highly fragmented landscapes.  相似文献   

8.

Questions

We aim for a better understanding of the different modes of intra‐ and inter‐specific competition in two‐ and three‐species mixed‐forests. How can the effect of different modes of competitive interactions be detected and integrated into individual tree growth models? Are species interactions in spruce–fir–beech forests more associated with size‐symmetric or size‐asymmetric competition? Do competitive interactions between two of these species change from two‐ to three‐species mixtures?

Location

Temperate mixed‐species forests in Central Europe (Switzerland).

Methods

We used data from the Swiss National Forest Inventory to fit basal area increment models at the individual tree level, including the effect of ecological site conditions and indices of size‐symmetric and size‐asymmetric competition. Interaction terms between species‐specific competition indices were used to disentangle significant differences in species interactions from two‐ to three‐species mixtures.

Results

The growth of spruce and fir was positively affected by increasing proportions of the other species in spruce–fir mixtures, but negative effects were detected with increasing presence of beech. We found that competitive interactions for spruce and fir were more related to size‐symmetric competition, indicating that species interactions might be more associated with competition for below‐ground resources. Under constant amounts of stand basal area, the growth of beech clearly benefited from the increasing admixture of spruce and fir. For this species, patterns of size‐symmetric and size‐asymmetric competitive interactions were similar, indicating that beech is a strong self‐competitor for both above‐ground and below‐ground resources. Only for silver fir and beech, we found significant changes in species interactions from two‐ to three‐species mixtures, but these were not as prominent as the effects due to differences between intra‐ and inter‐specific competition.

Conclusions

Species interactions in spruce–fir–beech, or other mixed forests, can be characterized depending on the mode of competition, allowing interpretations of whether they occur mainly above or below ground level. Our outcomes illustrate that species‐specific competition indices can be integrated in individual tree growth functions to express the different modes of competition between species, and highlight the importance of considering the symmetry of competition alongside competitive interactions in models aimed at depicting growth in mixed‐species forests.
  相似文献   

9.
10.
11.
Abstract

Predator control will be required to save many mohua (Mohoua ochrocephala) populations from extinction. However, control may be required only in years when stoat (Mustela erminea) densities are high. To manage local stoat populations effectively, a reliable predictor of high risk years is required. We examined whether different levels of beech seedfall and mouse capture rates were related to the levels of mohua predation recorded in the Hawdon Valley, Arthur's Pass National Park, and the Eglinton Valley, Fiordland National Park, between 1989 and 1994. During this period there was only one full beech mast year in each study area during autumn. The full mast seedfall in Hawdon Valley was predominantly of mountain beech (Nothofagus solandri var. cliffortioides) and red beech (N. fused), and in Eglinton Valley it was predominantly silver beech (TV. menziesii). During the following summer, mouse and stoat densities, and the predation rate of adult mohua, all increased considerably. There was very little predation on adult mohua in the summers following poor seedfalls when mouse and predator densities remained low. In 1993, a partial mast did not trigger a mouse or stoat irruption.

We conclude that counts of beech seedfall and indices of mouse density are potential predictors of an impending irruption of key predators. Winter mouse density appeared to be the most reliable indicator, because neither stoats nor mice respond to seedfall alone. A combination of these indicators could be used as a basis for management decisions on whether to undertake stoat control to protect mohua populations in the future. However, more information is required on the seedfall thresholds that may trigger sufficient increases in mouse and stoat numbers and, consequently, bird predation.  相似文献   

12.
Modern forestry management has reduced the amount of dead wood in forest ecosystems and this has become a serious threat to flora and fauna. Efforts are therefore being made to reverse this trend but one problem is that we still lack detailed knowledge regarding the substrate requirements of many saproxylic species. In a field experiment, conducted in three forest types (forest reserve, mature managed forest and clear-cut), we evaluated the value, from a conservation perspective, of different substrate types (logs, snags and tops) of Norway Spruce, Picea abies, and if the quality of spruce logs as saproxylic habitats can be improved by simple log treatments (scorching and shading). We collected 9982 individuals representing 262 saproxylic beetle species in window traps. Both substrate type and, to a lesser extent, log treatment had a significant effect on the abundance and species richness of saproxylic beetles attracted to the different dead wood substrates. However, more importantly, the composition of the beetle assemblages differed significantly between both substrates and log treatments. Snags, logs and tops all attracted significantly different beetle assemblages and scorched logs differed from untreated control logs. Sixteen red listed species were trapped, with the highest number (11 species) being found on scorched logs. We found strong evidence that some species preferred a specific substrate type, mainly logs, in some cases treated logs (scorched or shaded), but not snags, the substrate commonly provided for conservation purposes on e.g. clear-cuts. This stresses the importance of conducting forestry in such a way that a multitude of both forest habitats and dead wood substrates are available continuously in the forest landscape to maintain biodiversity.  相似文献   

13.
Aude  Erik  Lawesson  Jonas E. 《Plant Ecology》1998,134(1):53-65
The importance of management regime on floristic variation (mosses and vascular plants) in four Danish beech forests was investigated. Sixty-four blocks were sampled, representing beech stands of different age and management types. Nineteen potential explanatory variables were recorded and tested with Monte-Carlo tests and Canonical Correspondence Analysis. In addition results were evaluated by use of Detrended Correspondence Analysis. Explanatory variables were divided into three groups; soil, microclimatic and management parameters. The amount of variation explained by each group of variables was calculated by use of variation partitioning. The group consisting of management variables explained most variation, on local as well as regional scale. Management related variables explained more variation in vegetation than any other variables together. This indicates the importance of management as determining species composition in Danish beech forests. Management related variables explained most variation on local scale. On a regional scale, soil parameters explained the major part of the variation. The results suggest that thirty years without management are sufficient to change species composition significantly, as compared to managed forests.  相似文献   

14.
Forest age is one of the most simple but ecologically effective key values that may be controlled by forest management. Young and mature but managed forests differ significantly from old-growth forests in species composition, structure and socio-ecological function. Human land-use has already caused the loss or dramatic reduction in occurrence of some entire species assemblages, especially of logging-sensitive species, in Central European forests. These general statements also apply to beech forests, beech (Fagus sylvatica) being the naturally dominating tree species in Central Europe. Based on data for breeding birds (from 258 sampling plots in a sub-montane and 228 plots in a montane area), molluscs (36 plots in the sub-montane and 79 plots in the montane area) and lichens (84 plots in the montane forest), this paper aims at identifying significant forest age threshold ranges for the occurrence of these old-growth sensitive taxa. The sampling plots in the sub-montane zone (420–520 m a.s.l.) are in beech-oak forests, plots in the montane zone (650–1150 m a.s.l.) are in beech-spruce-fir forests. Stand ages in both areas range up to around 350–400 years. Threshold values for the total number of species related to stand age were calculated by recursive partitioning.In all three taxonomic groups the number of species per plot significantly increases with forest age. The same analysis was run for red-listed lichen and mollusc species as well as hole-nesting bird species. The threshold values obtained are very similar to those for the whole species assemblages, except for molluscs where considerably lower threshold values are computed with red-listed species assemblages. Regarding the confidence intervals, the difference pattern between the whole species datasets and the more sensitive species subsets is inconsistent. Threshold values in sub-montane beech forests range from 100 to 170 years and in mixed montane forests from 160 to 220 years.These threshold levels are clearly incompatible with economic interests that aim on reducing the rotation period in beech stands to less than 140 years to avoid formation of red heartwood. It would therefore seem to be essential to establish a network of trees and stands that are never logged and may thus act as areas for retreat and dispersion for logging-sensitive species.  相似文献   

15.
eIF4A is a highly conserved RNA‐stimulated ATPase and helicase involved in the initiation of mRNA translation. The Arabidopsis genome encodes two isoforms, one of which (eIF4A‐1) is required for the coordination between cell cycle progression and cell size. A T‐DNA mutant eif4a1 line, with reduced eIF4A protein levels, displays slow growth, reduced lateral root formation, delayed flowering and abnormal ovule development. Loss of eIF4A‐1 reduces the proportion of mitotic cells in the root meristem and perturbs the relationship between cell size and cell cycle progression. Several cell cycle reporter proteins, particularly those expressed at G2/M, have reduced expression in eif4a1 mutant meristems. Single eif4a1 mutants are semisterile and show aberrant ovule growth, whereas double eif4a1 eif4a2 homozygous mutants could not be recovered, indicating that eIF4A function is essential for plant growth and development.  相似文献   

16.
The theory of metabolic ecology predicts specific relationships among tree stem diameter, biomass, height, growth and mortality. As demographic rates are important to estimates of carbon fluxes in forests, this theory might offer important insights into the global carbon budget, and deserves careful assessment. We assembled data from 10 old-growth tropical forests encompassing censuses of 367 ha and > 1.7 million trees to test the theory's predictions. We also developed a set of alternative predictions that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size. Our results show that there are no universal scaling relationships of growth or mortality with size among trees in tropical forests. Observed patterns were consistent with our alternative model in the one site where we had the data necessary to evaluate it, and were inconsistent with the predictions of metabolic ecology in all forests.  相似文献   

17.
Understanding the processes underlying emigrating behavior isfundamental to better understand animal dispersal. Because ofthe difficulties involved in carrying out controlled manipulationof the proximate drivers of emigration over large spatial scales,results from laboratory or small field enclosures suitable forsmall-bodied species remains to be validated in natural habitats.We investigate whether emigration is driven either by intraspecificcompetition or resulted from hunting-risk avoidance and assessedthe effect of phenotypic variation on individual decisions.We made use of a quasi-experimental situation by using huntingrecoveries of mallards (Anas platyrhynchos) released as ducklingsin a fragmented landscape managed for duck hunting. Our resultssuggest an indirect effect of hunting on emigration. Body sizeplays a major role in modulating individual emigrating decisions,with small-bodied individuals emigrating more to escape fromhigh levels of predation pressure while larger bodied individualsbeing more vulnerable to predation.  相似文献   

18.
19.
Dispersal distances of 17 species of butterflies in tropical Singapore were significantly greater in forest than in urban habitat. Butterflies in urban plots frequently moved within suitable habitat (park/grassland) patches but rarely crossed non-habitat patches suggesting potential isolation and a need for urban corridors.  相似文献   

20.
Aim Tropical forests have been recognized as important global carbon sinks and sources. However, many uncertainties about the spatial distribution of live tree above‐ground biomass (AGB) remain, mostly due to limited availability of AGB field data. Recent studies in the Amazon have already shown the importance of large sample size for accurate AGB gradient analysis. Here we use a large stem density, basal area, community wood density and AGB dataset to study and explain their spatial patterns in an Asian tropical forest. Location Borneo, Southeast Asia. Methods We combined stem density, basal area, community wood density and AGB data from 83 locations in Borneo with an environmental database containing elevation, climate and soil variables. The Akaike information criterion was used to select models and environmental variables that best explained the observed values of stem density, basal area, community wood density and AGB. These models were used to extrapolate these parameters across Borneo. Results We found that wood density, stem density, basal area and AGB respond significantly, but differentially, to the environment. AGB was only correlated with basal area, but not with stem density and community wood specific gravity. Main conclusions Unlike results from Amazonian forests, soil fertility was an important positive correlate for AGB in Borneo while community wood density, which is a main driver of AGB in the Neotropics, did not correlate with AGB in Borneo. Also, Borneo's average AGB of 457.1 Mg ha?1 was c. 60% higher than the Amazonian average of 288.6 Mg ha?1. We find evidence that this difference might be partly explained by the high density of large wind‐dispersed Dipterocarpaceae in Borneo, which need to be tall and emergent to disperse their seeds. Our results emphasize the importance of Bornean forests as carbon sinks and sources due to their high carbon storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号