首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria parasites adapt to the oxidative stress during their erythrocytic stages with the help of vital thioredoxin redox system and glutathione redox system. Glutathione reductase and thioredoxin reductase are important enzymes of these redox systems that help parasites to maintain an adequate intracellular redox environment. In the present study, activities of glutathione reductase and thioredoxin reductase were investigated in normal and Plasmodium berghei-infected mice red blood cells and their fractions. Activities of glutathione reductase and thioredoxin reductase in P. berghei-infected host erythrocytes were found to be higher than those in normal host cells. These enzymes were mainly confined to the cytosolic part of cell-free P. berghei. Full characterization and understanding of these enzymes may promise advances in chemotherapy of malaria.  相似文献   

2.
Dihydrofolate reductase activity in duckling erythrocytes was found to be low, while activity in erythrocytes heavily infected with small uninucleate trophozoites was like that of uninfected erythrocytes. Activity of the enzyme in erythrocytes infected with large multinucleate parasites, however, was greatly increased. This activity was 5 times higher in erythrocyte-free large trophozoites than in small ones. The dihydrofolate reductase of P. lophurae differed from the host enzyme in: greater molecular weight; higher sensitivity to pyrimethamine inhibition; pH optimum; substrate and cofactor specificity; and stimulation by salts. The parasite enzyme was partially purified by ammonium sulfate precipitation.  相似文献   

3.
Summary By means of histochemical methods, folic acid, dihydrofolate reductase and NADH2-cytochrome-C-reductase were studied in the bovine superior cervical ganglion, in parallel with quantitative estimations of dihydrofolate reductase activity and in connection with the process of ageing. Various levels of folate metabolism were present in nerve cells and glial cells, as well as in pre or postganglionic nerves. In the process of ageing the activity of dihydrofolate reductase gradually decreased and the folic acid concentration in the nerve cells increased. Thus the enzyme — substrate ratio appeared to favour the enzyme in young animals but the substrate in old animals.  相似文献   

4.
Antiserum was obtained from mice which had been immunized with irradiated Plasmodium berghei parasitized erythrocytes and which survived subsequent challenge. This antiserum suppressed P. berghei infections in mice; parasitemia and mortality were delayed 7–8 days as compared to those of control animals. Parasites surviving in antiserum-treated animals were isolated by inoculation of blood into normal recipients. When antiserum was tested against this derived parasite population, there was no observable effect on parasitemia or mortality. The derived parasites also exhibited a decreased virulence for mice. This work confirms the previous observation that antiserum treatment can result in a biologically variant population of P. berghei.  相似文献   

5.
The methemoglobin reductase system plays a vital role in maintaining the equilibrium between hemoglobin and methemoglobin in blood. Exposure of red blood cells to oxidative stress (pathological/physiological) may cause impairment to this equilibrium. We studied the status of erythrocytic methemoglobin and the related reductase system during Plasmodium yoelii nigeriensis infection in mice and P. berghei infection in mastomys. Malaria infection was induced by intraperitoneal inoculation with 106 infected erythrocytes. The present investigation revealed a significant decrease in the activity of methemoglobin reductase, with a concomitant rise in methemoglobin content during P. yoelii nigeriensis infection in mice erythrocytes. This was accompanied with a significant increase in reduced glutathione and ascorbate levels. The activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase increased with a progressive rise in parasitemia. However, no methemoglobin or associated reductase activity was detected in normal and P. berghei-infected mastomys. P. berghei infection in mastomys resulted in an increase in the level of reduced glutathione and ascorbate in erythrocytes, and also in the activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase. These results suggest that antioxidants/antioxidant enzymes may prevent or reduce the formation of methemoglobin in the host and thereby protect the host from methemoglobinemia.  相似文献   

6.
Tritiated Clindamycin was used to compare the uptake of Clindamycin in plasma and red cells of mice infected with clindamycin-sensitive or clindamycin-resistant Plasmodium berghei and in uninfected mice. Red cells infected with either sensitive or resistant parasites have a higher concentration of [3H]clindamycin and its active metabolites 1 hr after drug administration than uninfected red blood cells. There was no significant difference in uptake of Clindamycin by red blood cells parasitized by sensitive or resistant parasites. Levels of Clindamycin and its metabolites were consistently higher in red cells than in plasma, both in infected and uninfected mice, but the drug was readily removed by washing red cells with phosphate buffered saline in either case. It is concluded that resistance to Clindamycin is not due to an impaired uptake of the drug by the parasitized red cell as has been shown for chloroquine resistance in P. falciparum and P. berghei.  相似文献   

7.
SYNOPSIS. Plasmodium lophurae cannot carry out extensive de novo purine biosynthesis, and depends upon the host erythrocyte for a supply of preformed purines. Exogenous purines taken up by the parasitized erythrocyte may constitute a major source of preformed purines for parasite nucleotide biosynthesis. The uptake of exogenous radioactive purine compounds and their incorporation into nucleic acids by duck erythrocytes parasitized with P. lophurae, uninfected erythrocytes, and erythrocyte-free parasites were studied. P. lophurae was found to have a remarkable ability, both intracellularly and extracellularly, to take up and utilize certain exogenous purines such as adenosine, inosine, and hypoxanthine. Incorporation studies indicated that this species has a functional purine salvage pathway by which inosine, hypoxanthine, and adenosine can be converted to both adenine and guanine nucleotides.  相似文献   

8.
ABSTRACT. The effects of different sulphonamides, dihydrofolate reductase inhibitors and other inhibitors of folate metabolism on growth of Acanthamoeba culbertsoni in a chemically defined medium are reported. Among the sulphonamides, sulphamethoxazole and sulphadiazine were most effective followed by sulphanilamide and sulphaguanidine. Inhibition by each sulphonamide was reversed by p-aminobenzoic acid as well as folic acid. 7-Methylguanosine, a pteridine synthesis-inhibitor, did not inhibit multiplication of A. culbertsoni. Among the dihydrofolate reductase inhibitors, pyrimethamine blocked the amoebic growth at 100 μg/ml, while trimethoprim and cycloguanil palmoate failed to cause significant inhibition of growth even at 250 μg/ml. Metoprine inhibited amoebic growth completely at 50 μg/ml. Methotrexate and a thymidylate synthetase inhibitor 5-fluorouracil inhibited growth strongly, with IC50 values (the concentration of the drug which causes 50% inhibition of the growth at 72 h) of 1.97 and 2.45 μg/ml, respectively. Inhibition by methotrexate, metoprine or 5-fluorouracil could not be reversed by folic acid, folinic acid, thymidine, or folinic acid plus thymidine. the results indicate unusual features in A. culbertsoni folate metabolism.  相似文献   

9.
Free infectious Plasmodium berghei parasites (FP) were used in a system suitable for measurement of protective antibody in the serum of rats recovered from malaria. By the fluorescent antibody technique it was demonstrated that the free parasites, but not parasites in erythrocytes, became coated with antibody after incubation in recovered rat serum. Because immune sera capable of coating free parasites did not protect mice against FP inocula, but partially or completely protected rats, it is probable that antibody coating alone is not sufficient to kill the parasites. It was further demonstrated in vitro, with one strain of P. berghei, that phagocytes more readily ingested parasites in the presence of immune serum than in the presence of normal serum. This observation suggests that phagocytosis of the antibody coated parasite probably was required to prevent infection.  相似文献   

10.
Malaria-associated pathology is caused by the continuous expansion of Plasmodium parasites inside host erythrocytes. To maintain a reducing intracellular milieu in an oxygen-rich environment, malaria parasites have evolved a complex antioxidative network based on two central electron donors, glutathione and thioredoxin. Here, we dissected the in vivo roles of both redox pathways by gene targeting of the respective NADPH-dependent disulfide reductases. We show that Plasmodium berghei glutathione reductase and thioredoxin reductase are dispensable for proliferation of the pathogenic blood stages. Intriguingly, glutathione reductase is vital for extracellular parasite development inside the insect vector, whereas thioredoxin reductase is dispensable during the entire parasite life cycle. Our findings suggest that glutathione reductase is the central player of the parasite redox network, whereas thioredoxin reductase fulfils a specialized and dispensable role for P. berghei. These results also indicate redundant roles of the Plasmodium redox pathways during the pathogenic blood phase and query their suitability as promising drug targets for antimalarial intervention strategies.  相似文献   

11.
Introduction     
The role of reactive oxygen species (ROS) generated by polymorphonuclear leucocytes (PMNs) in the host response against malaria was investigated. Non-activated human PMNs were added to cultures of P. falciparum in microtitre cells. Parasite viability was evaluated by the incorporation of radioactive hypoxanthine. Using PMN/RBC = 1/150 (starting parasitemia was 1+) the incorporation on the second day in culture was only 61+ of the control cultures. An effect could be observed already after two hours of incubation (30+ reduction at a 1/50 PMN/RBC ratio). A direct contact between the effector and target cells was obligatory for the expression of the damage.

Parasites within G6PD-deficient erythrocytes were more sensitive to the PMNs than normal parasitized erythrocytes. This difference could be attributed to the production of reactive oxygen intermediates in the experimental system, since G6PD-deficient erythrocytes are generally more sensitive to oxidant stress.

Salicylic acid was used as a scavenger and reporter molecule for hydroxyl radical fluxes. It is converted to the corresponding dihydroxybenzoic acid derivatives, which could be detected by HPLC. Uninfected NRBC or parasitized erythrocytes containing young ring forms could trigger the PMNs to produce much less ROS than the mature forms of the parasites. Other factors associated with PMNs may inactivate the parasites, such as phagocytosis, lysosomal enzymes or degradation toxic products of the PMNs. However our results indicate that increased oxidative stress induced by PMNs interfere with the growth of P. falciparum and could play a role in human evolution of abnormal erythrocytes.  相似文献   

12.
High resolution 31P-NMR has been used for the non-invasive observation of metabolites and metabolic rates in blood of normal mice and of mice infected with Plasmodium berghei, the causative agent of malaria. 31P-NMR was used to quantitate levels of 2,3-diphosphoglycerate in whole cells as a function of the degree of parasitemia and yielded good agreement with the results of enzymatic assays. The time-dependence of 31P metabolites was monitored in both normal and infected erythrocytes, greater rates of decay of 2,3-diphosphoglycerate being observed in malarial blood which correlate with the level of parasitemia. Very high metabolic rates of infected cells render measurement of intracellular pH unreliable on freshly drawn whole blood. When appropriate measures are taken to avoid this complication, no difference is observed in the intracellular pH of parasitized and non-parasitized erythrocytes from infected animals. In both normal and parasitized mice the intraerythrocytic pH is more acidic than that of the suspending medium by 0.15 pH unit at 25°C. Unlike free-living protozoa, the parasitic protozoan Plasmodium does not contain detectable levels of phosphonates or polyphosphates, in either whole cells or perchloric acid extracts thereof.  相似文献   

13.
The osmotic properties of intraerythrocytic and ultrasonically liberated malaria parasites (Plasmodium berghei) were analyzed and compared with those of mouse host erythrocytes utilizing a multiple tube fragility test. Cells were incubated in phosphate buffered saline solutions of varying osmolalities ranging from 20–4000 mOsm. Changes in cell ultrastructure and parasite infectivity were used as indicators of osmotic damage. Intraerythrocytic and host cell-free plasmodia showed similar patterns of cell alteration and changes in infectivity following osmotic stress. The various developmental forms within each of the preparations responded somewhat differently to hypo-osmotic stress, however. The majority of merozoites seemed to be more sensitive than many trophozoites, schizonts, and segmenters. Small trophozoites were, on the average, more resistant than other developmental forms. Incubation of parasite populations in hypotonic salt solutions with osmolalities slightly greater than the infectivity threshold of 100 mOsm lysed the majority of the merozoites, whereas many small trophozoites were still intact. While normal erythrocytes were more resistant to hypo-osmotic stress than were either intracellular or free parasites, the majority of parasitized erythrocytes was less resistant than normal erythrocytes. The predominant alteration induced by hyperosmotic stress appears in the parasite's nuclear region with myelination of the nuclear membranes and chromatin clumping. The infectivity threshold in the hypertonic range was found to be approximately 2500 mOsm. Results indicate that these obligate intracellular parasites have a wide range of osmotic sensitivities and that they are capable of existing for short periods in various osmotic environments ranging from 100–2500 mOsm without complete loss of infectivity. This suggests that these parasites have osmotic regulatory capabilities at least comparable to those of host cells.  相似文献   

14.
SYNOPSIS. The feasibility of applying immunoferritin technics in malarial antibody studies was explored using the asexual erythrocytic stages of Plasmodium berghei. Anti-P. berghei antibodies were induced in rats by repeated infection and in rabbits by immunization with French press- or saponin-prepared antigens. Ferritin tagging was observed in thin sections of some freed and intracellular P. berghei parasites after exposure to ferritin-labeled antibodies. A more extensive localization of ferritin was observed in cells subjected to the indirect versus the direct method of incubation. With formalin as a prefixative as opposed to glutaraldehyde, an increased ferritin tagging and the distribution of ferritin at intracellular sites was evident. These observations are discussed in terms of the damage and associated increase in permeability which often appeared in our formalin-fixed tissue. Controls with normal serum or normal uninfected erythrocytes differed in ferritin localization from their corresponding test materials in only a few trials. The need for antibody preparations as free as possible from reactivity to host components became obvious. The positive results obtained when ferritin alone (especially TC-modified ferritin) was applied in excess indicated a nonspecific binding and the necessity of purifying the conjugates of unbound ferritin was stressed. Native ferritin was found in the large double membranebound host inclusions, small vesicles and residual body of P. berghei.  相似文献   

15.
Malaria parasites are fast replicating unicellular organisms and require substantial amounts of folate for DNA synthesis. Despite the central role of this critical co‐factor for parasite survival, only little is known about intraparasitic folate trafficking in Plasmodium. Here, we report on the expression, subcellular localisation and function of the parasite's folate transporter 2 (FT2) during life cycle progression in the murine malaria parasite Plasmodium berghei. Using live fluorescence microscopy of genetically engineered parasites, we demonstrate that FT2 localises to the apicoplast. In invasive P. berghei stages, a fraction of FT2 is also observed at the apical end. Upon genetic disruption of FT2, blood and liver infection, gametocyte production and mosquito colonisation remain unaltered. But in the Anopheles vector, FT2‐deficient parasites develop inflated oocysts with unusual pulp formation consisting of numerous single‐membrane vesicles, which ultimately fuse to form large cavities. Ultrastructural analysis suggests that this defect reflects aberrant sporoblast formation caused by abnormal vesicular traffic. Complete sporogony in FT2‐deficient oocysts is very rare, and mutant sporozoites fail to establish hepatocyte infection, resulting in a complete block of parasite transmission. Our findings reveal a previously unrecognised organellar folate transporter that exerts critical roles for pathogen maturation in the arthropod vector.  相似文献   

16.
By means of histochemical methods, folic acid, dihydrofolate reductase and NADH2-cytochrome-C-reductase were studied in the bovine superior cervical ganglion, in parallel with quantitative estimations of dihydrofolate reductase activity and in connection with the process of ageing. Various levels of folate metabolism were present in nerve cells and glial cells, as well as in pre or postganglionic nerves. In the process of ageing the activity of dihydrofolate reductase gradually decreased and the folic acid concentration in the nerve cells increased. Thus the enzyme --- substrate ratio appeared to favour the enzyme in young animals but the substrate in old animals.  相似文献   

17.
SYNOPSIS. The presence of anemia that often seems excessive for the amount of parasitemia in Plasmodium berghei infections had led to the suggestion that autoimmunity might be in part responsible for the anemia. In another erythrocytic infection, Anaplasma marginale of cattle, the association of erythrophagocytosis, autohemagglutination and anemia with infection has led to the suggestion that autoimmunization may occur in anaplasmosis. The possibility that similar findings might be present in P. berghei infections of rats has been investigated. Groups of rats infected with P. berghei were examined at 2–3 day intervals during the course of infection. Red blood cell counts, hematocrit values and percentages of parasitized erythrocytes were determined. The rats were bled at intervals and the sera tested for agglutinins for trypsinized rat erythrocytes. Other infected rats were killed, and their spleens and bone marrow were examined for evidence of erythrophagocytosis. Parasitemia reached a peak on the 9th day of infection and became subpatent by the 14th. The greatest depression in erythrocyte numbers occurred on the 11th day, and the counts remained below normal until the 23rd day. Phagocytized erythrocytes, predominantly uninfected, were found in the phagocytes of the spleen and bone marrow from the 5th through the 21st day. Agglutinins for trypsinized normal rat erythrocytes were present in the sera of the rats in titers as high as 1:64 from the 5th through 14th day of infection. Lower agglutinin titers (1:8) were found from time to time in sera of rats made anemic by repeated bleedings. It is not clear whether these agglutinins are responsible for erythrophagocytosis; however, the fact that predominantly uninfected erythrocytes were phagocytized suggests that the erythrocytes might have been opsonized by an autoantibody associated with the P. berghei infections.  相似文献   

18.
The pathophysiological impact of infections with chloroquine-susceptible (CQS) and chloroquine-resistant (CQR) strains of Plasmodium berghei in Mastomys natalensis was studied with respect to changes in polyamine profiles in various tissues. Both CQS and CQR infections produced similar changes in polyamine profiles of various tissues. Maximum increase was recorded in spleen followed by liver and lungs. Renal, cardiac and cerebral tissues did not register significant changes. An increase in spermidine level was more prominent as compared to putrescine and spermine, leading to an overall increase in spermidine/spermine ratio. This ratio is an important index of cellular proliferation. Liver did not show considerable change in the activities of ornithine decarboxylase and S-adenosyl methionine decarboxylase, the regulatory enzymes of the polyamine biosynthetic pathway. Spleen however, registered marked induction of both the enzymes which was more prominent in the CQS infection than CQR. Normal erythrocytes contained traces of polyamine while the erythrocytes loaded with P. berghei parasites exhibited appreciably higher polyamine levels. Spermidine was detected in about five-fold higher concentrations than putrescine and spermine which were detected in equimolar levels. Again, CQS as well as CQR P. berghei, exhibited qualitatively and quantitatively similar polyamine profiles thus ruling out a role of polyamines in CQ-resistance in malaria. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
C D Fitch 《Life sciences》1977,20(7):1281-1284
Studies of infective potency were done to determine why chloroquine-resistant P.berghei is an obligate parasite of immature erythrocytes. Infective potency was estimated from the length of time required for mice to develop parasitemia of 2% (delay in parasitemia). The delay in parasitemia was an inverse linear function of the logarithm of the number of parasites inoculated. A single regression line fitted the data both for susceptible and for resistant parasites, indicating identical infective potencies which, in turn, indicates that chloroquine-resistant P.berghei selects and preferentially infects immature erythrocytes whereas it rejects mature erythrocytes.  相似文献   

20.
In the presence of dihydrofolate reductase the carbon magnetic resonance spectrum of folate labeled at the benzoylcarbonyl carbon with 13C contains two broadened peaks arising from free and enzyme-bound folate, the latter appearing over 2 ppm upfield from free folate. Addition of TPN+ causes sharpening of both peaks indicating formation of a single folate-TPN+-enzyme ternary complex. Methotrexate specifically displaces folate from the ternary complex regenerating a single sharp resonance at 170.4 ppm characteristic of free folate. Line width changes show that folate is bound more tightly in the ternary than in the binary complex. Increased shielding of this carbonyl upon binding is inconsistent with its participation in a H-bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号