首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethiopian cattle are under threat from uncontrolled mating practices and are at high risk of becoming genetically homogeneous. Therefore, to evaluate genetic diversity, population structure and degree of admixture, 30 microsatellite markers were genotyped using 351 DNA samples from 10 Ethiopian cattle populations and the Holstein breed. The mean number of alleles per cattle population ranged from 6.93 ± 2.12 in Sheko to 7.50 ± 2.35 in Adwa. The mean observed and expected heterozygosities were 0.674 ± 0.015 and 0.726 ± 0.019 respectively. Ethiopian cattle populations have maintained a high level of within-population genetic differentiation (98.7%), the remainder being accounted for by differentiation among populations (1.3%). A highly significant deficiency in heterozygotes was detected within populations ( F IS = 0.071; P  <   0.001) and total inbreeding ( F IT = 0.083; P  <   0.001). The study populations were highly admixed but distinct from pure Bos taurus and Bos indicus breeds. The various levels of admixture and high genetic diversity make Ethiopian cattle populations suitable for future genetic improvement and utilization under a wide range of agro-ecologies in Ethiopia.  相似文献   

2.
The ancestry of New World cattle was investigated through the analysis of mitochondrial and Y chromosome variation in Creoles from Argentina, Brazil, Mexico, Paraguay and the United States of America. Breeds that influenced the Creoles, such as Iberian native, British and Zebu, were also studied. Creoles showed high mtDNA diversity (H = 0.984 ± 0.003) with a total of 78 haplotypes, and the European T3 matriline was the most common (72.1%). The African T1a haplogroup was detected (14.6%), as well as the ancestral African‐derived AA matriline (11.9%), which was absent in the Iberian breeds. Genetic proximity among Creoles, Iberian and Atlantic Islands breeds was inferred through their sharing of mtDNA haplotypes. Y‐haplotype diversity in Creoles was high (H = 0.779 ± 0.019), with several Y1, Y2 and Y3 haplotypes represented. Iberian patrilines in Creoles were more difficult to infer and were reflected by the presence of H3Y1 and H6Y2. Y‐haplotypes confirmed crossbreeding with British cattle, mainly of Hereford with Pampa Chaqueño and Texas Longhorn. Male‐mediated Bos indicus introgression into Creoles was found in all populations, except Argentino1 (herd book registered) and Pampa Chaqueño. The detection of the distinct H22Y3 patriline with the INRA189‐90 allele in Caracú suggests introduction of bulls directly from West Africa. Further studies of Spanish and African breeds are necessary to elucidate the origins of Creole cattle, and determine the exact source of their African lineages.  相似文献   

3.
Pink salmon Oncorhynchus gorbuscha from odd and even year generations in rivers of Sakhalin Island, Kuril Island, Kamchatka Peninsula, and Alaska were investigated with five informative restriction endonucleases for mtDNA variation. The odd and even generations from the same rivers of South Sakhalin differed greatly. The time of divergence between the two broodlines was estimated at 0.9-1.1 Myr. The variability of mtDNA in odd year generations was higher than in even year generations and may have been due to' founder' and/or' bottleneck' effects. The differences among river populations within the Sakhalin region in 1991-1993 were not significant and this confirms the highly migratory nature of pink compared with other Pacific salmon. The mtDNA samples revealed statistically significant differences between regions. The northern populations (Kamchatka, Alaska) were less diverse in number and frequency of haplotypes than the southern populations (Sakhalin). This suggests that pink salmon originated in the Sakhalin-Kuril region and that a founder effect during the spread of this species may have restricted the mtDNA variability in other regions.  相似文献   

4.
Phylogenetic relationships of Northeast Asian cattle to various other cattle breeds including Bos taurus, Bos indicus, and Bison bison were assessed using mtDNA D-loop sequences. A neighbor-joining tree was constructed using sequences determined for 4 Cheju Black, 4 Cheju Yellow, 4 Korean Yellow cattle (Bos taurus), and 2 American Brahman cattle (Bos indicus), and also published sequences for 31 Japanese Black cattle, 45 European breed cattle, 6 African zebus, 2 African taurines, and 6 Indian zebus. Five American bisons (Bison bison) were used as an outgroup. The neighbor-joining tree showed that American bisons and Indian zebus are clearly separate from other cattle breeds, respectively, and African cattle clustered together, although with a low bootstrap probability (<50%). Results indicate that cattle in Northeast Asia, Europe, and Africa are closely related to each other–suggesting their recent divergence, but are separate from Indian zebus.  相似文献   

5.
Equine mitochondrial DNA (mtDNA) phylogeny reconstruction reveals a complex pattern of variation unlike that seen in other large domesticates. It is likely that this pattern reflects a process of multiple and repeated, although not necessarily independent, domestication events. Until now, no clear geographic affiliation of clades has been apparent. In this study, amova analyses have revealed a significant non-random distribution of the diversity among equine populations when seven newly sequenced Eurasian populations were examined in the context of previously published sequences. The association of Eastern mtDNA types in haplogroup F was highly significant using Fisher's exact test of independence (P = 0.00000). For the first time, clear biogeographic partitioning has been detected in equine mtDNA sequence.  相似文献   

6.
Recent studies presenting genetic analysis of dog breeds do not focus specifically on genetic relationships among pointing dog breeds, although hunting was among the first traits of interest when dogs were domesticated. This report compares histories with genetic relationships among five modern breeds of pointing dogs (English Setter, English Pointer, Epagneul Breton, Deutsch Drahthaar and German Shorthaired Pointer) collected in Spain using mitochondrial, autosomal and Y-chromosome information. We identified 236 alleles in autosomal microsatellites, four Y-chromosome haplotypes and 18 mitochondrial haplotypes. Average F ST values were 11.2, 14.4 and 13.1 for autosomal, Y-chromosome microsatellite markers and mtDNA sequence respectively, reflecting relatively high genetic differentiation among breeds. The high gene diversity observed in the pointing breeds (61.7–68.2) suggests contributions from genetically different individuals, but that these individuals originated from the same ancestors. The modern English Setter, thought to have arisen from the Old Spanish Pointer, was the first breed to cluster independently when using autosomal markers and seems to share a common maternal origin with the English Pointer and German Shorthaired Pointer, either via common domestic breed females in the British Isles or through the Old Spanish Pointer females taken to the British Isles in the 14th and 16th centuries. Analysis of mitochondrial DNA sequence indicates the isolation of the Epagneul Breton, which has been formally documented, and shows Deutsch Drahthaar as the result of crossing the German Shorthaired Pointer with other breeds. Our molecular data are consistent with historical documents.  相似文献   

7.
Identification of units within species worthy of separate management consideration is an important area within conservation. Mitochondrial DNA (mtDNA) surveys can potentially contribute to this by identifying phylogenetic and population structure below the species level. The American crocodile (Crocodylus acutus) is broadly distributed throughout the Neotropics. Its numbers have been reduced severely with the species threatened throughout much of its distribution. In Colombia, the release of individuals from commercial captive populations has emerged as a possible conservation strategy that could contribute to species recovery. However, no studies have addressed levels of genetic differentiation or diversity within C. acutus in Colombia, thus complicating conservation and management decisions. Here, sequence variation was studied in mtDNA cytochrome b and cytochrome oxidase I gene sequences in three Colombian captive populations of C. acutus. Two distinct lineages were identified: C. acutus‐I, corresponding to haplotypes from Colombia and closely related Central American haplotypes; and C. acutus‐II, corresponding to all remaining haplotypes from Colombia. Comparison with findings from other studies indicates the presence of a single “northern” lineage (corresponding to C. acutus‐I) distributed from North America (southern Florida), through Central America and into northern South America. The absence of C. acutus‐II haplotypes from North and Central America indicates that the C. acutus‐II lineage probably represents a separate South American lineage. There appears to be sufficient divergence between lineages to suggest that they could represent two distinct evolutionary units. We suggest that this differentiation needs to be recognized for conservation purposes because it clearly contributes to the overall genetic diversity of the species. All Colombian captive populations included in this study contained a mixture of representatives of both lineages. As such, we recommend against the use of captive‐bred individuals for conservation strategies until further genetic information is available.  相似文献   

8.
To investigate the genetic structure of human populations in the South-west region of Iran, mitochondrial first hypervariable DNA sequences were obtained from 50 individuals representing three different ethnic groups from Khuzestan Province. Studied groups were Shushtari Persians and Chahar Lang Bakhtiyaries from Indo-European-speaking populations and Bani Torof Arabs from Semitic-speaking linguistic families. Genetic analysis of mtDNA data showed high similarity of Chahar Lang Bakhtiyaries with other Iranian Indo-European-speaking populations while Shushtaries and Bani Torofs had a closer affinity with Semitic-speaking groups rather than to other Iranian populations. The relationship of Chahar Lang Bakhtiyaries and Bani Torof Arabs with their neighbor populations can be explained by linguistic and geographic proximity. Whereas, the greater similarity of Shushtari Persians with West Asian Arabs is probably according to high gene flow between them. This article represents a preliminary study of three major ethnic groups of South-west Iran which investigates the potential genetic substructure of the region.  相似文献   

9.
Forest musk deer ( Moschus berezovskii ) were once distributed widely in China. However, wild populations have declined dramatically because of poaching and habitat loss. Captive breeding populations have been established for several decades, but the genetic backgrounds of most captive populations were unclear and the population sizes increased very slowly. To provide useful information for conservation and management of this species, we investigated the genetic diversity and population structure of forest musk deer by analysing a 582-bp fragment of the mitochondrial DNA (mtDNA) control region (CR) in three captive breeding populations in Sichuan Province, China. Ninety-four variable sites and 27 haplotypes were observed in 109 individuals, and the nucleotide and haplotype diversities were relatively high compared with those of other endangered mammals. Of the three investigated populations, the Maerkang population had the highest nucleotide diversity ( π  = 0.0568), haplotype diversity ( h  =   0.836) and average intra-population genetic distance (0.062). The analysis of molecular variance demonstrated that most variation occurred within samples and that there was significant differentiation of the three populations. Estimates of gene flow indicated that there were few genetic exchanges among the three populations. Building pedigree records and increasing gene flow between populations will be helpful for conserving these populations and this species.  相似文献   

10.
Using ND5 sequences from mtDNA and 10 nuclear markers, we investigated the genetic differentiation of two South American Creole sheep phenotypes that historically have been bred in different biomes in southern Brazil. In total, 18 unique mtDNA haplotypes were detected, none of which was shared between the two phenotypes. Bayesian analysis also indicated two different groups (k = 2). Thus, these varieties are supported as being genotypically distinct. This situation could have resulted either from geographical isolation, associated with differences in the cultural habits of sheep farmers and in the way that flocks were managed, or more likely, from the introduction of different stocks four centuries ago.  相似文献   

11.
Origin and phylogeographical structure of Chinese cattle   总被引:7,自引:0,他引:7  
Lei CZ  Chen H  Zhang HC  Cai X  Liu RY  Luo LY  Wang CF  Zhang W  Ge QL  Zhang RF  Lan XY  Sun WB 《Animal genetics》2006,37(6):579-582
Complete mitochondrial D-loop sequences of 231 samples were used to explore the origin and genetic diversity of Chinese cattle. Phylogenetical analysis of these sequences revealed both Bos taurus and Bos indicus mitochondrial types in Chinese cattle. Four of the previously identified mitochondrial DNA lineages (T1–T4) were identified in the Bos taurus type, including lineage T1, which was found for the first time in Chinese cattle. Two lineages (I1 and I2) were identified in the Bos indicus type. Our results support the suggestion that the Yunnan-Guizhou Plateau is the domestication site of Chinese zebu. We also found evidence that Tibetan cattle originated from taurine and zebu cattle. The distribution pattern of Chinese cattle breeds was closely related to the geographical and climatic background. It was possible to divide Chinese cattle in this study into two major groups: northern and southern cattle.  相似文献   

12.
13.
The genetic structure of the Dexter, a minority cattle breed with complex demographic history, was investigated using microsatellite markers and a range of statistical approaches designed to detect both admixture and genetic drift. Modern representatives of two putative ancestral populations, the Devon and Kerry, together with the different populations of the Dexter, which have experienced different demographic histories, were analysed. Breed units showed comparatively high levels of genetic variability ( H E = 0.63–0.68); however, distinct genetic subgroups were detected within the Dexter, which could be attributed to known demographic events. Much lower diversity was identified in three small, isolated Dexter populations ( H E = 0.52–0.55) and higher differentiation ( F ST > 0.13) was found. For one of these populations, where strong selection has taken place, we also found evidence of a demographic bottleneck. Three methods for quantifying breed admixture were applied and substantial method-based variation in estimates for the genetic contribution of the two proposed ancestral populations for each subdivision of the Dexter was found. Results were consistent only in the case of a group consisting of selected Traditional Dexter animals, where the ancestor of the modern Kerry breed was also determined as the greater parental contributor to the Dexter. The inconsistency of estimation of admixture proportions between the methods highlights the potentially confounding role of genetic drift in shaping small population structure, and the consequences of accurately describing population histories from contemporary genetic data.  相似文献   

14.
The present study investigated the use of the random amplified polymorphic DNA (RAPD) method to detect genetic variation in cattle and sheep. The animals studied consisted of samples from five Finnish cattle breeds: native Eastern (18 animals), Northern (24), Western Finncattle (24), Finnish Ayrshire (24), and Finnish Friesian (18); as well as a white (6 animals) and a grey (9) colour type of Finnsheep. The cattle and sheep populations were analysed with 11 and 13 RAPD primers demonstrating the most repeatable amplification pattern. Two out of ten RAPD fragments tested by cross hybridization showed homology between the two species. The RAPD method did not prove efficient for finding new polymorphisms in either species, because we found only three polymorphic RAPD markers for cattle and seven markers for sheep with different allele frequencies between the breeds. Although there is a greater presence of polymorphic RAPD markers in sheep, according to the similarity indices the sheep populations showed a higher degree of homogeneity than the cattle breeds. However, the interbreed and intrabreed similarity indices for cattle did not suggest any significant differentiation of the Finnish breeds, contrary to earlier results based on blood group and protein polymorphism.  相似文献   

15.
The Horn of Africa forms one of the two main historical entry points of domestics into the continent and Ethiopia is particularly important in this regard. Through the analysis of mitochondrial DNA (mtDNA) d‐loop region in 309 individuals from 13 populations, we reveal the maternal genetic variation and demographic dynamics of Ethiopian indigenous goats. A total of 174 variable sites that generated 231 haplotypes were observed. They defined two haplogroups that were present in all the 13 study populations. Reference haplotypes from the six globally defined goat mtDNA haplogroups show the two haplogroups present in Ethiopia to be A and G, the former being the most predominant. Although both haplogroups are characterized by an increase in effective population sizes (Ne) predating domestication, they also have experienced a decline in Ne at different time periods, suggesting different demographic histories. We observed seven haplotypes, six were directly linked to the central haplotypes of the two haplogroups and one was central to haplogroup G. The seven haplotypes were common between Ethiopia, Kenya, Egypt, and Saudi Arabia populations, suggesting common maternal history and the introduction of goats into East Africa via Egypt and the Arabian Peninsula, respectively. While providing new mtDNA data from a historically important region, our results suggest extensive intermixing of goats mediated by human socio‐cultural and economic interactions. These have led to the coexistence of the two haplogroups in different geographic regions in Ethiopia resulting in a large caprine genetic diversity that can be exploited for genetic improvement.  相似文献   

16.
微卫星标记对12个中外牛品种群体遗传结构的研究   总被引:11,自引:0,他引:11  
李荣岭  张桂香  王志刚  王慧  韩旭  王冬蕾  王均辉 《遗传》2007,29(12):1463-1470
选用联合国粮农组织(FAO)和国际动物遗传学会(ISAG)推荐的12对微卫星引物, 采用荧光标记–多重PCR技术, 检测了9个中国地方黄牛品种和3个外来牛品种的遗传多样性。利用等位基因频率计算出各群体的平均遗传杂合度(H)、多态信息含量(PIC)和群体间的DA及DS遗传距离。基于DA遗传距离, 用UPGMA法进行聚类分析, 结果12个中外牛品种被聚为4类: Ⅰ类属于南方黄牛品种, 包括恩施牛、黎平牛、昭通牛和川南山地牛; Ⅱ类属于中原黄牛品种, 包括郏县红牛、早胜牛和平陆山地牛; Ⅲ类属于北方黄牛, 包括延边牛和长白地方牛; Ⅳ类属于外来牛品种, 包括西门塔尔牛、夏洛来牛和德国黄牛。研究结果为中国地方牛品种的保护和利用提供了理论依据。  相似文献   

17.
Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69 903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.  相似文献   

18.
Mitochondrial DNA from representative animals of 13 different cattle breeds was assayed for restriction fragment length polymorphisms (RFLP) to determine phylogenetic relationships and levels of variation among breeds; 16 different mitotypes were found, described by 20 polymorphisms. Within these 16 mitotypes two major lineages were apparent: an Afro-European and an Asian type. These were found to differ at over 2.3% of sites surveyed. None of the mitotypes found in the Asian lineage was detectable in the Afro-European lineage and vice versa. Within each of the major mitotypes there were no further significant differences within or among breeds. Using rates of mitochondrial evolution estimated from other species, the two lineages were estimated to have diverged between 575000 and 1150000 years ago; well outside the 10000 years bp timeframe postulated by a single domestication hypothesis. The results presented are concordant with those generated in other studies and provide strong evidence for an independent domestication of Asian Bos indicus. Furthermore, the grouping of all African indicine populations within the clade containing all Bos taurus lineages points to the hybrid origins of the humped cattle of that continent.  相似文献   

19.
The objectives of this work were to assess the mtDNA diversity of Bolivian South American camelid (SAC) populations and to shed light on the evolutionary relationships between the Bolivian camelids and other populations of SACs. We have analysed two different mtDNA regions: the complete coding region of the MT‐CYB gene and 513 bp of the D‐loop region. The populations sampled included Bolivian llamas, alpacas and vicunas, and Chilean guanacos. High levels of genetic diversity were observed in the studied populations. In general, MT‐CYB was more variable than D‐loop. On a species level, the vicunas showed the lowest genetic variability, followed by the guanacos, alpacas and llamas. Phylogenetic analyses performed by including additional available mtDNA sequences from the studied species confirmed the existence of the two monophyletic clades previously described by other authors for guanacos (G) and vicunas (V). Significant levels of mtDNA hybridization were found in the domestic species. Our sequence analyses revealed significant sequence divergence within clade G, and some of the Bolivian llamas grouped with the majority of the southern guanacos. This finding supports the existence of more than the one llama domestication centre in South America previously suggested on the basis of archaeozoological evidence. Additionally, analysis of D‐loop sequences revealed two new matrilineal lineages that are distinct from the previously reported G and V clades. The results presented here represent the first report on the population structure and genetic variability of Bolivian camelids and may help to elucidate the complex and dynamic domestication process of SAC populations.  相似文献   

20.
周志军  尚娜  刘静  常岩林  石福明 《生态学报》2013,33(6):1770-1777
采用PCR扩增结合DNA克隆测序技术,分析了斑翅草螽Conocephalus maculates 9个地理种群mtDNA控制区序列的变异及遗传多样性。切除侧翼RNA基因序列后,最终获得的斑翅草螽mtDNA控制区比对后全长为676 bp,平均碱基组成T(37.8%),C(11.7%),A(41.3%)和G(9.1%)。共检测到98个可变位点,占总位点数的14.5%,其中,9处碱基插入/缺失,74处转换(40个T/C,34个A/G),50处颠换(18个A/T,11个T/G,15个A/C,6个C/G)。共定义46个单倍型,其中,4个为种群间共享单倍型(H02、H05、H08和H10),其余42个为各种群独有单倍型,包括6个种群内共享单倍型(H09、H11、H15、H18、H26和H38)。单倍型总数占实验个体总数的69.7%,除四川峨眉山外,其余种群单倍型百分比均﹥50%。通过两两地理种群间的FST值差异显著性检验,将这些群体分为4组,分别为SC+CQ,GX+FLB+HN+YN,XZ和HB。以长瓣草螽C.gladiatus、峨眉草螽C.emeiensis、悦鸣草螽C.melaenus、竹草螽C.bambusanus为外群,构建的斑翅草螽mtDNA控制区单倍型NJ法系统树形成3个自举支持度较高的分支,其中,分支A由28种单倍体组成,包括本研究中除四川峨眉山(SC)和重庆万州(CQ)以外的7个种群;分支B由12种单倍体组成,包含除菲律宾拉乌尼翁(FLB)和江西南昌(JX)以外的7个种群;分支C由6种单倍型组成,全部来自西藏林芝(XZ)的单倍型。聚类结果表明,斑翅草螽不同地理种群间的遗传分化并不明显,即使是两两群体间FST值差异显著的群体,也未能形成完全独立的分支。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号