首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30 degrees C and unfolds reversibly and sequentially with two transitions at temperatures below 12 degrees C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with beta-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity.  相似文献   

2.
Two multiple mutants of a psychrophilic alpha-amylase were produced, bearing five mutations (each introducing additional weak interactions found in pig pancreatic alpha-amylase) with or without an extra disulfide bond specific to warm-blooded animals. Both multiple mutants display large modifications of stability and activity arising from synergic effects in comparison with single mutations. Newly introduced weak interactions and the disulfide bond confer mesophilic-like stability parameters, as shown by increases in the melting point t(m), in the calorimetric enthalpy DeltaH(cal) and in protection against heat inactivation, as well as by decreases in cooperativity and reversibility of unfolding. In addition, both kinetic and thermodynamic activation parameters of the catalyzed reaction are shifted close to the values of the porcine enzyme. This study confirms the central role of weak interactions in regulating the balance between stability and activity of an enzyme in order to adapt to the environmental temperature.  相似文献   

3.
Alkaline phosphatase is an extracellular enzyme that is membrane-bound in eukaryotes but resides in the periplasmic space of bacteria. It normally carries four cysteine residues that form two disulfide bonds, for instance in the APs of Escherichia coli and vertebrates. An AP variant from a Vibrio sp. has only one cysteine residue. This cysteine is second next to the nucleophilic serine in the active site. We have individually modified seven residues to cysteine that are on two loops predicted to be within a 5 A radius. Four of them formed a disulfide bond to the endogenous cysteine. Thermal stability was monitored by circular dichroism and activity measurements. Global stability was similar to the wild-type enzyme. However, a significant increase in heat-stability was observed for the disulfide-containing variants using activity as a measure, together with a large reduction in catalytic rates (k(cat)) and a general decrease in Km values. The results suggest that a high degree of mobility near the active site and in the helix carrying the endogenous cysteine is essential for full catalytic efficiency in the cold-adapted AP.  相似文献   

4.
While beta-propeller phytases (BPPs) from Gram-positive bacteria do not carry disulfide bonding, their counterparts from Gram-negative bacteria contain cysteine residues that may form disulfide bonds. By molecular modeling, two amino acid residues of B. subtilis 168 phytase (168PhyA), Ser-161 and Leu-212, were mutated to cysteine residues. Although the double cysteine mutant was secreted from B. subtilis at an expression level that was 3.5 times higher than that of the wild type, the biochemical and enzymatic properties were unaltered. In CD spectrometric analysis, both enzymes exhibited similar apparent melting temperatures and mid-points of transition under thermal and guanidine hydrochloride induced denaturation, respectively. In enzyme assays, the mutant phytase exhibited a poor refolding ability after thermal denaturation. We postulate that the disulfide bond in BPP sequences from Gram-negative bacteria is beneficial to their stability in the periplasmic compartment. In contrast, the lack of periplasmic space in Bacillus species and the fact that Bacillus BPPs are released extracellularly may render disulfide bonds unnecessary. This may explain why in evolution, BPPs in Bacillus species do not carry disulfide bonds.  相似文献   

5.
Ovalbumin, which contains one intrachain disulfide bond and four cysteine sulfhydryls, was reduced with dithiothreitol under non-denaturing conditions, and its conformation and stability were compared with those of the disulfide-bonded form. The CD spectrum in the far-UV region revealed that the overall conformation of the reduced form is similar to that of the disulfide-bonded one. Likewise, the inaccessibility to trypsin and the non-reactivity of the four cysteine sulfhydryls, exhibited by the native disulfide-bonded ovalbumin, were still retained in the disulfide-reduced form. Thus, the reduced ovalbumin appeared to substantially take the native-like conformation. However, the near-UV CD spectrum slightly differed between the native and disulfide-reduced forms. Protein alkylation with a fluorescent dye and subsequent sequence analysis showed that the two sulfhydryls (Cys73 and Cys120) originating from the disulfide bond are highly reactive in the reduced form. Furthermore, upon proteolysis with subtilisin, the N-terminal side of Cys73 was cleaved in the reduced form, but not in the disulfide-bonded one. Upon heat denaturation, the transition temperature of the reduced form was lower, by 6.8 degrees C, than that of the disulfide-bonded one. Thus, we concluded that ovalbumin has a native-like conformation in its disulfide-reduced form, but that the local conformation of the reduced form fluctuates more than that of the disulfide-bonded one. Such local destabilization may be related to the decreased stability against heat denaturation.  相似文献   

6.
Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα‐Cα distances, solvent exposure, and side‐chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C‐terminus of the B‐chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild‐type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R‐state conformation and thus showing that the R‐state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function.  相似文献   

7.
Oxidative folding is the fusion of native disulfide bond formation with conformational folding. This complex process is guided by two types of interactions: first, covalent interactions between cysteine residues, which transform into native disulfide bridges, and second, non-covalent interactions giving rise to secondary and tertiary protein structure. The aim of this work is to understand both types of interactions in the oxidative folding of Amaranthus alpha-amylase inhibitor (AAI) by providing information both at the level of individual disulfide species and at the level of amino acid residue conformation. The cystine-knot disulfides of AAI protein are stabilized in an interdependent manner, and the oxidative folding is characterized by a high heterogeneity of one-, two-, and three-disulfide intermediates. The formation of the most abundant species, the main folding intermediate, is favored over other species even in the absence of non-covalent sequential preferences. Time-resolved NMR and photochemically induced dynamic nuclear polarization spectroscopies were used to follow the oxidative folding at the level of amino acid residue conformation. Because this is the first time that a complete oxidative folding process has been monitored with these two techniques, their results were compared with those obtained at the level of an individual disulfide species. The techniques proved to be valuable for the study of conformational developments and aromatic accessibility changes along oxidative folding pathways. A detailed picture of the oxidative folding of AAI provides a model study that combines different biochemical and biophysical techniques for a fuller understanding of a complex process.  相似文献   

8.
Arai M  Hamel P  Kanaya E  Inaka K  Miki K  Kikuchi M  Kuwajima K 《Biochemistry》2000,39(12):3472-3479
Human lysozyme has four disulfide bonds, one of which, Cys65-Cys81, is included in a long loop of the beta-domain. A cysteine-scanning mutagenesis in which the position of Cys65 was shifted within a continuous segment from positions 61 to 67, with fixed Cys81, has previously shown that only the mutant W64CC65A, which has a nonnative Cys64-Cys81 disulfide, can be correctly folded and secreted by yeast. Here, using the W64CC65A mutant, we investigated the effects of an alternative disulfide bond on the structure, stability, and folding of human lysozyme using circular dichroism (CD) and fluorescence spectroscopy combined with a stopped-flow technique. Although the mutant is expected to have a different main-chain structure from that of the wild-type protein around the loop region, far- and near-UV CD spectra show that the native state of the mutant has tightly packed side chains and secondary structure similar to that of the wild-type. Guanidine hydrochloride-induced equilibrium unfolding transition of the mutant is reversible, showing high stability and cooperativity of folding. In the kinetic folding reaction, both proteins accumulate a similar burst-phase intermediate having pronounced secondary structure within the dead time of the measurement and fold into the native structure by means of a similar folding mechanism. Both the kinetic refolding and unfolding reactions of the mutant protein are faster than those of the wild-type, but the increase in the unfolding rate is larger than that of the refolding rate. The Gibbs' free-energy diagrams obtained from the kinetic analysis suggest that the structure around the loop region in the beta-domain of human lysozyme is formed after the transition state of folding, and thus, the effect of the alternative disulfide bond on the structure, stability, and folding of human lysozyme appears mainly in the native state.  相似文献   

9.
The potential for engineering stable proteins with multiple amino acid substitutions was explored. Eleven lysine, five methionine, two tryptophan, one glycine, and three threonine substitutions were simultaneously made in barley chymotrypsin inhibitor-2 (CI-2) to substantially improve the essential amino acid content of the protein. These substitutions were chosen based on the three-dimensional structure of CI-2 and an alignment of homologous sequences. The initial engineered protein folded into a wild-type-like structure, but had a free energy of unfolding of only 2.2 kcal/mol, considerably less than the wild-type value of 7.5 kcal/mol. Restoration of the lysine mutation at position 67 to the wild-type arginine increased the free energy of unfolding to 3.1 kcal/mol. Subsequent cysteine substitutions at positions 22 and 82 resulted in disulfide bond formation and a protein with nearly wild-type thermodynamic stability (7.0 kcal/mol). None of the engineered proteins retained inhibitory activity against chymotrypsin or elastase, and all had substantially reduced inhibitory activity against subtilisin. The proteolytic stabilities of the proteins correlated with their thermodynamic stabilities. Reduction of the disulfide bond resulted in substantial loss of both thermodynamic and proteolytic stabilities, confirming that the disulfide bond, and not merely the cysteine substitutions, was responsible for the increased stability. We conclude that it is possible to replace over a third of the residues in CI-2 with minimal disruption of stability and structural integrity.  相似文献   

10.
Summary Protein engineering techniques were employed to graft the known anticoagulant Arg-Gly-Asp (RGD) motifcontaining sequences onto the surface of a mutant, inactive insulin framework. To probe the effect of a disulfide bond on the resultant anticoagulant activity, a native RGD-containing sequence from disintegrin dendroaspin, CFTPRGDMPGPYC, as well as a modified sequence, SFTPRGDMPGPYS were each examined. The peptide was placed between the C-terminal of the B chain and the N-terminal of the A chain and connected with B27 and A1 residues of the inactive insulin that lacks the characteristic intramolecular A6–11 disulfide bond within the A chain. The two RGD-containing insulin genes were over-expressed inE. coli, and purified and designated as RGD-Cys-Ins and RGD-Ser-Ins, respectively. Their amino acid compositions and mass data were in good agreement with those of expected. The RGD-Cys-Ins showed inhibition of platelet aggregation with an IC50 of 3 μM, while the latter was 3.5-fold less active. Thein vivo assay also indicated that the RGD-Cys-Ins had a higher activity in prolonging the bleeding time in mice than RGD-Ser-Ins. Both RGD-Cys-Ins and RGD-Ser-Ins retained about 25% of the proinsulin immunoactivity and had almost no insulin receptor binding activity. The results indicate the necessity for the RGD motif to be conformationally constrained for it to elicit a greater anticoagulant activity.  相似文献   

11.
Protein engineering techniques were employed to graft the known anticoagulant Arg-Gly-Asp (RGD) motif-containing sequences onto the surface of a mutant, inactive insulin framework. To probe the effect of a disulfide bond on the resultant anticoagulant activity, a native RGD-containing sequence from disintegrin dendroaspin, CFTPRGDMPGPYC, as well as a modified sequence, SFTPRGDMPGPYS, were each examined. The peptide was placed between the C-terminal of the B chain and the N-terminal of the A chainand connected with B27 and A1 residues of the inactive insulin that lacks the characteristic intramolecular A6-11 disulfide bondwithin the A chain. The two RGD-containing insulin genes were over-expressed in E. coli, and purified and designatedas RGD-Cys-Ins and RGD-Ser-Ins, respectively. Their amino acid compositions and mass data were in good agreement with those ofexpected. The RGD-Cys-Ins showed inhibition of platelet aggregation with an IC50 of 3 M, while the latter was3.5-fold less active. The in vivo assay also indicatedthat the RGD-Cys-Ins had a higher activity in prolonging the bleeding time in mice than RGD-Ser-Ins. Both RGD-Cys-Ins and RGD-Ser-Ins retained about 25% of the proinsulin immunoactivity and had almost no insulin receptor binding activity. The results indicate the necessity for the RGD motif to be conformationally constrained for it to elicit a greater anticoagulant activity.  相似文献   

12.
13.
From the comparison of the three-dimensional structure of mesophilic pyroglutamyl peptidase from Bacillus amyloliquefaciens and the thermophilic enzyme from Thermococcus litoralis, the intersubunit disulfide bond was estimated to be one of the factors for thermal stability. Since Ser185 was corresponded to Cys190 of the thermophilic enzyme by sequence alignment, the Ser185 residue was replaced with cysteine by site-directed mutagenesis. The S185C mutant enzyme appeared to form a disulfide bond, which was confirmed by SDS-PAGE with and without 2-mercaptoethanol. The mutant enzyme showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. However, the thermal stability of the S185C mutant was found to be 30 degrees C higher than that of wild-type. Thus the introduction of a disulfide bond enhanced thermal stability without changing the catalytic efficiency of the enzyme.  相似文献   

14.
The antigen-binding fragment of functional heavy chain antibodies (HCAbs) in camelids comprises a single domain, named the variable domain of heavy chain of HCAbs (VHH). The VHH harbors remarkable amino acid substitutions in the framework region-2 to generate an antigen-binding domain that functions in the absence of a light chain partner. The substitutions provide a more hydrophilic, hence more soluble, character to the VHH but decrease the intrinsic stability of the domain. Here we investigate the functional role of an additional hallmark of dromedary VHHs, i.e. the extra disulfide bond between the first and third antigen-binding loops. After substituting the cysteines forming this interloop cystine by all 20 amino acids, we selected and characterized several VHHs that retain antigen binding capacity. Although VHH domains can function in the absence of an interloop disulfide bond, we demonstrate that its presence constitutes a net advantage. First, the disulfide bond stabilizes the domain and counteracts the destabilization by the framework region-2 hallmark amino acids. Second, the disulfide bond rigidifies the long third antigen-binding loop, leading to a stronger antigen interaction. This dual beneficial effect explains the in vivo antibody maturation process favoring VHH domains with an interloop disulfide bond.  相似文献   

15.
Chu X  Yu W  Wu L  Liu X  Li N  Li D 《Biochimica et biophysica acta》2007,1774(12):1571-1581
Mevalonate kinase is one of ATP-dependent enzymes in the mevalonate pathway and catalyzes the phosphorylation of mevalonate to form mevalonate 5-phosphate. In animal cells, it plays a key role in regulating biosynthesis of cholesterol, while in microorganisms and plants, it is involved in the biosynthesis of isoprenoid derivatives that are one of the largest groups of natural products. Crystal structure and sequence alignment show that a unique disulfide bond exists in mevalonate kinase of thermostable species Methanococcus jannaschii, but not in rat mevalonate kinase. In the present study, we investigated the effect of the disulfide bond in M. jannaschii mevalonate kinase and an engineered disulfide bond in rat mevalonate kinase mutant A141C on the properties of enzymes through characterization of their wild-type and variant enzymes. Our result suggests that the Cys107-Cys281 disulfide bond is important for maintaining the conformation and the thermal activity of M. jannaschii mevalonate kinase. Other interactions could also have contributions. The thiol-titration and fluorescence experiment further indicate that rat mevalonate kinase A141C variant enzyme has a new disulfide bond, which makes the variant protein enhance its thermal activity and resist to urea denaturation.  相似文献   

16.
The inhibitory effect of 0.19 alpha-amylase inhibitor (0.19 AI) from wheat kernel on the porcine pancreas alpha-amylase (PPA)-catalyzed hydrolysis of p-nitrophenyl-alpha-D-maltoside (pNP-G2) was examined. 0.19 AI is a homodimer of 26.6 kDa with 13.3-kDa subunits under the conditions used. The elution behaviors in gel filtration HPLC of PPA and 0.19 AI indicated that a PPA molecule bound with a 0.19 AI molecule (homodimer) at a molar ratio of 1:1. 0.19 AI inhibited PPA activity in a competitive manner with an inhibitor constant, K(i), of 57.3 nM at pH 6.9, 30 degrees C, and the binding between them was found to be endothermic and entropy-driven. The activation energy for the thermal inactivation of 0.19 AI was determined to be 87.0 kJ/mol, and the temperature, T(50), giving 50% inactivation in a 30-min incubation at pH 6.9 was 88.1 degrees C. The high inhibitory activity of 0.19 AI against PPA and its high thermal stability suggest its potential for use in the prevention and therapy of obesity and diabetes.  相似文献   

17.
Glial cell line-derived neurotrophic factor (GDNF) is a member of the TGF-beta superfamily of proteins. It exists as a covalent dimer in solution, with the 15 kDa monomers linked by an interchain disulfide bond through the Cys101 residues. Sedimentation equilibrium and velocity experiments demonstrated that, after removal of the interchain disulfide bond, GDNF remains as a non-covalent dimer and is stable at pH 7.0. To investigate the effect of the intermolecular disulfide on the structure and stability of GDNF, we compared the solution structures of the wild-type protein and a cysteine-101 to alanine (C101A) mutant using Fourier transform infrared (FTIR), FT-Raman and circular dichroism (CD) spectroscopy and sedimentation analysis. The elimination of the intermolecular disulfide bond causes only minor changes (approximately 4%) in the secondary structures of GDNF. The far- and near-UV CD spectra demonstrated that the secondary and tertiary structures were similar for both wild-type and C101A GDNF. Heparin binding and sedimentation velocity experiments also indicated that the folded structure of the wild-type and C101A GDNF are indistinguishable. The thermal stability of GDNF does not appear to be affected by the absence of the interchain disulfide bond and the biological activity of the C101A mutant is identical with that of the wild-type protein. However, small but significant changes in side chain conformations of tyrosine and aliphatic residues were observed by FT-Raman spectroscopy upon removal of the intermolecular disulfide bond, which may reflect structural changes in the area of dimeric contact. By comparing the Raman spectrum of wild-type GDNF with that of the C101A analog, we identified the conformation of the intermolecular disulfide as trans-gauche-trans geometry. These results indicate that GDNF is an active, properly folded molecule in the absence of the interchain disulfide bond.  相似文献   

18.
The introduction of a disulfide bond into the neutral protease from Bacillus stearothermophilus by the double mutation G8C/N60C had resulted in an extremely thermostable enzyme with a half-life of 35.9 min at 92.5 degrees C [Mansfeld, J., Vriend, G., Dijkstra, B.W., Veltman, O.R., van den Burg, B., Venema, G., Ulbrich-Hofmann, R. & Eijsink, V.G. (1997) J. Biol. Chem. 272, 11152-11156]. The study in guanidine hydrochloride of this enzyme and the respective wild-type enzyme allowed us to distinguish between the stability toward global unfolding and autoproteolysis. At low protease concentrations (20 microg.mL-1) and short periods of incubation with guanidine hydrochloride (5 min), transition curves without the interference by autoproteolysis could be derived from fluorescence emission measurements. The effect of the disulfide bond on the global unfolding of the protein proved to be smaller than expected. In contrast, the measurement of autoproteolysis at higher protein concentrations (100 microg.mL-1) by quantitative evaluation of the bands of intact protein on SDS/PAGE revealed a strong stabilization toward autoproteolytic degradation by the disulfide bond. The rate of autoproteolysis in guanidine hydrochloride was found to be much lower than that of thermal denaturation, which can be attributed to the inhibition of the proteases by this denaturant. The results suggest that the disulfide bond stabilizes the protease against autoproteolysis more than against global unfolding. Autoproteolysis starts as soon as the cleavage sites in flexible external structural regions become accessible. It is suggested that the stabilizing effect of the disulfide bond is caused by the fixation of the crucial loop region 56-69 or by hindrance of the primary cleavage in this region by the amino acid exchanges.  相似文献   

19.
The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.  相似文献   

20.
Bombyxin-II, an insulin superfamily peptide of the silkmoth Bombyx mori, and its disulfide bond isomers have been synthesized by two ways of stepwise, semi-regioselective disulfide bond formation. The disulfide bond CysA20-CysB22 or CysA7-CysB10 was formed first, and then the two other disulfide bonds were formed by iodine oxidation. The conditions for the iodine oxidation were improved to suppress oxidative degradation of unprotected Trp residues. With these conditions, bombyxin-II was synthesized in high yields (26% and 32%). Its disulfide bond isomers were also obtained. Specific activity of the products indicates that the disulfide bond CysA20-CysB22 is important to the bombyxin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号