首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Relaxation of catch tension by 8-bromo-cyclic GMP in the ABRM of Mytilus was blocked in the presence of mersalyl and was markedly reduced after treatment of the muscle with alpha-methyldopa. In the muscle depolarized by 540 mM KCl + 5 mM EGTA solution, 8-bromo-cyclic GMP could not relax Ca-contracture. Hexylamine and phenylethylamine, which are assumed to relax the catch acting on relaxing nerve terminals, could not relax the contracture either. Serotonin and dopamine, which are known to relax the catch acting directly on the muscle fibre membrane, could relax it. In the muscle depolarized by 250 mM KCl + 5 mM EGTA solution, all of the cyclic nucleotides tested (cyclic AMP, cyclic GMP and their analogues), serotonin and dopamine relaxed Ca-contracture, but hexylamine and phenylethylamine did not relax the contracture. The possibilities of the involvement of cyclic GMP in the presynaptic and postsynaptic relaxing mechanisms in the ABRM are discussed.  相似文献   

3.
The anterior byssal retractor muscle (ABRM) of a bivalve mollusc Mytilus edulis is known to exhibit catch state, i.e. a prolonged tonic contraction maintained with very little energy expenditure. Two different hypotheses have been put forward concerning the catch state; one assumes actin-myosin linkages between the thick and thin filaments that dissociate extremely slowly (linkage hypothesis), while the other postulates a load-bearing structure other than actin-myosin linkages (parallel hypothesis). We explored the possible load-bearing structure responsible for the catch state by examining the arrangement of the thick and thin filaments within the ABRM fibers, using techniques of quick freezing and freeze substitution. No thick filament aggregation was observed in the cross-section of the fibers quickly frozen not only in the relaxed and actively contracting states but also in the catch state. The thick filaments were, however, occasionally interconnected with each other either directly or by distinct projections in all the three states studied. The proportion of the interconnected thick filaments relative to the total thick filaments in a given cross-sectional area was much larger in the catch state than in the relaxed and actively contracting states, providing evidence that the thick filament interconnection is responsible for the catch state.  相似文献   

4.
cAMP-dependent protein kinase (PKA) plays a crucial role in the release of the catch state of molluskan muscles, but the nature of the enzyme in such tissues is unknown. In this paper, we report the purification of the catalytic (C) subunit of PKA from the posterior adductor muscle (PAM) of the sea mussel Mytilus galloprovincialis. It is a monomeric protein with an apparent molecular mass of 40.0+/-2.0kDa and Stoke's radius 25.1+/-0.3A. The protein kinase activity of the purified enzyme was inhibited by both isoforms of the PKA regulatory (R) subunit that we had previously characterized in the mollusk, and also by the inhibitor peptide PKI(5-24). On the other hand, the main proteins of the contractile apparatus of PAM were partially purified and their ability to be phosphorylated in vitro by purified PKA C subunit was analyzed. The results showed that twitchin, a high molecular mass protein associated with thick filaments, was the better substrate for endogenous PKA. It was rapidly phosphorylated with a stoichiometry of 3.47+/-0.24mol Pmol(-1) protein. Also, catchin, paramyosin, and actin were phosphorylated, although more slowly and to a lesser extent. On the contrary, myosin heavy chain (MHC) and tropomyosin were not phosphorylated under the conditions used.  相似文献   

5.
1. Nerve terminals associated with longitudinal muscle in the leech show FMRFamide-like immunoreactivity. 2. Structure-activity studies using FMRFamide analogs show that the C-terminal RFamide portion of the molecule is crucial for biological activity on leech longitudinal muscle. 3. The putative protease inhibitor FA (Phe-Ala) increases the peak tension produced by longitudinal muscle in response to superfused FMRFamide and the majority of its analogs, suggesting the presence of peripheral proteases capable of degrading RFamide peptides. 4. FMRFamide decreases the relaxation rate of neurally evoked contractions of longitudinal muscle. FA also decreases the relaxation rate of neurally evoked contractions. 5. Intact and isolated muscle cells respond to superfused FMRFamide with a conductance increase, that leads to depolarization and often with a delayed conductance decrease as the membrane potential is restored to resting levels. 6. The depolarizing response of isolated muscle cells to FMRFamide is dependent on external calcium.  相似文献   

6.
7.
The mussel cells from premyogenic larval stages are capable of differentiation into smooth muscle cells in vitro. However, the behavior and protein composition of these cells are not completely identical to those of smooth muscle cells of adult mussels. In this study we compared some properties of mussel muscle cells forming from cells of trochophore (premyogenic larval stage) in vitro with those of muscle cells of veliger and adult mussel. We found a substantial difference between the contractile apparatus protein composition of veliger muscle and cultivated cells. Myorod, one of the molecular markers of the phenotype of mollusc smooth muscle cells (Shelud'ko et al., 1999, Comp Biochem Physiol 122:277-285), is not a constituent of the contractile apparatus of veliger muscle. At the same time the protein composition of contractile apparatus in cultivated cells was similar to that of adult Mytilus muscles. There were only few quantitative differences between them. The contractile activity of cultivated cells was changing in time. The kinetic parameters of first spontaneous contractions were similar to those of phasic contractions, while their period was close to that of tonic contractions. After 50-55 hrs cultivation the cells produced both phasic and tonic contractions, but the character of contractile activity of cultivated cells was regulated after six days of cultivation only. However, there were no muscle cells in vitro, whose contractile activity was similar to that of veliger muscle cells. So, we concluded that properties of muscle cells forming from premyogenic larval mussel cells in culture are similar to those of muscle cells of the adult mussel, but not of veliger.  相似文献   

8.
9.
The effects of alpha-adrenoceptor agonists and antagonists on contractions of the ABRM of M. edulis were examined. Naphazoline (10(-11)-10(-7)M) as well as octopamine potentiated both contractions in response to ACh and to repetitive electrical stimulation with brief pulses, while clonidine (10(-12)-10(-6)M), imidazole (10(-4)-10(-3)M) and tolazoline (10(-6)-10(-4)M) potentiated only the contraction in response to repetitive electrical stimulation. Potentiating actions of octopamine and naphazoline on ACh contraction were blocked by tolazoline but were little affected by clonidine and imidazole. Potentiating after-effect of repetitive electrical stimulation on subsequent ACh-contraction was not affected by clonidine and imidazole but was blocked by tolazoline. These results suggest that in the ABRM there are probably at least two classes of alpha-like receptors for octopamine; one may be on the muscle fibres and the other may be on the excitatory nerve terminals. Activation of the latter class of receptors may result in enhancement of ACh release from the terminals.  相似文献   

10.
Summary Studies on the intrinsic innervation of the anterior byssal retractor muscle (ABRM) in Mytilus edulis L. were continued at the ultrastructural level. Electron micrographs show nerve processes ensheathed by glio-interstitial cells running between muscle fibers. The glio-interstitial cells may represent all the types of osmiophilic cells previously described by the light microscopic ZIO technique in the anterior byssal retractor muscle.  相似文献   

11.
12.
The anterior byssus retractor muscle of Mytilus edulis was used to characterize the myosin cross-bridge during catch, a state of tonic force maintenance with a very low rate of energy utilization. Addition of MgATP to permeabilized muscles in high force rigor at pCa > 8 results in a rapid loss of some force followed by a very slow rate of relaxation that is characteristic of catch. The fast component is slowed 3-4-fold in the presence of 1 mM MgADP, but the distribution between the fast and slow (catch) components is not dependent on [MgADP]. Phosphorylation of twitchin results in loss of the catch component. Fewer than 4% of the myosin heads have ADP bound in rigor, and the time course (0.2-10 s) of ADP formation following release of ATP from caged ATP is similar whether or not twitchin is phosphorylated. This suggests that MgATP binding to the cross-bridge and subsequent splitting are independent of twitchin phosphorylation, but detachment occurs only if twitchin is phosphorylated. A similar dependence of detachment on twitchin phosphorylation is seen with AMP-PNP and ATPgammaS. Single turnover experiments on bound ADP suggest an increase in the rate of release of ADP from the cross-bridge when catch is released by phosphorylation of twitchin. Low [Ca(2+)] and unphosphorylated twitchin appear to cause catch by 1) markedly slowing ADP release from attached cross-bridges and 2) preventing detachment following ATP binding to the rigor cross-bridge.  相似文献   

13.
14.
Myosin (opaque myosin) isolated from the opaque portion of scallop smooth muscle, a catch muscle, was subjected to limited digestion by trypsin during the steady-state ATPase reaction. The 200-kDa heavy chain of opaque myosin was cleaved into 125- and 74-kDa fragments. The proteolytic rate in the absence of Ca2+ was lower than that in the presence of Ca2+, and was similar to that in the presence of ADP and absence of Ca2+. The results suggest that the steady-state intermediate of opaque myosin ATPase in the absence of Ca2+ is EADP, which is consistent with the previous results based on the difference UV-absorption spectrum (Takahashi, M., Sohma, H., & Morita, F. (1988) J. Biochem. 104, 102-107). In the presence of F-actin, the proteolytic rates were decreased, but the digestive patterns by trypsin were similar to those of myosin alone. Even in the presence of F-actin, the proteolytic rate during the ATPase reaction in the absence of Ca2+ was lower than that in the presence of Ca2+, and was similar to that in the presence of ADP and absence of Ca2+. In addition, there was another trypsin-susceptible site which is probably located at 18 kDa from the N-terminal of the heavy chain. The site in the absence of Ca2+ was hardly cleaved when ATP or ADP was present. Similar tendencies were observed even in the presence of F-actin. These findings suggest that the intermediate of opaque myosin ATPase at the steady state in the absence of Ca2+ is EADP even in the presence of F-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The contractile activities of peptide leukotrienes (LT) on isolated spiral strips of ferret trachea were characterized pharmacologically. LTC4 and LTD4 contracted ferret tracheal strips in a concentration-related manner and were 3- to 8-fold more potent than carbachol. In contrast, high concentrations of LTE4 evoked either weak contractions or none at all, whereas LTC4 and D4 were partial agonists compared to carbachol. In tissues which were unresponsive to LTE4, this compound antagonized contractile responses to LTC4 and D4 in an apparently competitive manner: Carbachol-induced contractions were not altered by LTE4. The cyclooxygenase inhibitor, indomethacin (5 microM), LT antagonist, FPL55712 (10 microM), atropine (1 microM), phenoxybenzamine (10 microM), and LTB4 (10 microM) failed to alter LTC4 and D4 concentration-response curves. The results indicate that ferret trachea is sensitive to the contractile activity of LTC4 and LTD4 but not LTE4. The LT-induced contractions appear to be mediated by a direct action of the LT rather than indirectly through release of secondary mediators such as thromboxane, prostaglandin, or acetylcholine. LT receptors in ferret trachea are insensitive to FPL55712 but are antagonized by LTE4.  相似文献   

16.
A method for the almost complete extraction of myosin from smooth muscle fibers of the anterior byssal retractor muscle (ABRM) of Mytilus edulis was developed, and functional reformation of thick filaments in the fibers was achieved. Complete removal of myosin from the glycerol-extracted ABRM fibers with a solution containing 600 mM KCl, 5 mM MgCl2, and 5 mM ATP was difficult. However, successive treatments of the ABRM fibers with glycerol and saponin made the plasma membrane permeable to Mg-ATP and myosin. The extraction of myosin completely eliminated the tension induced by the addition of Mg-ATP. Partial recovery of tension development was observed by irrigation of myosin into fibers from which myosin had been extracted. Similar results were obtained using rabbit myosin instead of ABRM myosin. Addition of heavy meromyosin, on the other hand, had a suppressive effect on the tension development, as is the case in glycerinated rabbit psoas muscle fibers.  相似文献   

17.
Summary Preliminary ultrastructural studies on the effects of 5,6-Dihydroxytryptamine (5,6-DHT) on the anterior byssus retractor muscle (ABRM) of Mytilus show degeneration of 2 types of monoaminergic nerves after 10 days of drug treatment. One type contained large granular vesicles (560–1,680 Å) while the other had small granular vesicles (200–640 Å). These axons may possibly represent serotonergic and dopaminergic nerves, thought to innervate this muscle.Two other types of profiles seemed to be unaffected by the drug. One conforms to cholinergic nerves while the other has a predominance of large opaque vesicles (1,200–2,500 Å). The significance of these findings is discussed in the light of recent observations on the neurotoxic effects of 5,6-DHT on vertebrate and molluscan nerves.The author is grateful to Professor G. Burnstock for research facilities and Professor B. M. Twarog for advice and encouragement. This work was supported by the Ramaciotti Foundation  相似文献   

18.
19.
1. The anterior byssus retractor muscle (ABRM) of Mytilus edulis is innervated by at least two kinds of nerves, excitatory and relaxing nerves. The principal neurotransmitters released from these nerves have been shown to be acetylcholine and serotonin, respectively. 2. Some other monoamines, such as dopamine and octopamine, and various peptides, such as FMRFamide-related peptides, Mytilus inhibitory peptides, SCP-related peptides and a catch-relaxing peptide, may also be involved in the regulation of the muscle as neurotransmitters or neuromodulators. 3. The ABRM seems to be typical of invertebrate muscles controlled by multiple neurotransmitters and neuromodulators.  相似文献   

20.
FMRFamide is one of the well-known peptides studied within the phylum Mollusca. It was first isolated from the clam Macrocallista nimbosa during the end of the 1960s. Since then, a number of reports related to FMRFamide have been published from different experimental approaches, revealing that it and its related peptides (FaRPs) are implicated in a variety of physiological processes. As this year is the 30th anniversary since its discovery, this review focuses on diverse findings related to both FMRFamide and FaRPs in the phylum Mollusca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号