首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

2.
The process of ATP or GTP synthesis by bovine heart submitochondrial particles involves the binding of ADP or GDP to 3 exchangeable sites I, II, and III, and only upon substrate occupation of site III does rapid ATP or GTP synthesis take place. The dissociation constants determined for ADP were KADPI less than or equal to 10(-8) M, KADPII approximately 10(-7) M, and KADPIII (equivalent to apparent KADPm), approximately 3 x 10(-6) M in the low Km mode and KADPIII approximately 150 x 10(-6) M in the high Km mode. For GDP, these constants were KGDPI approximately 10(-6)-10(-5) M, KGDPII approximately 10(-4) M, and KGDPIII approximately 10(-3) M when NADH was the respiratory substrate (Matsuno-Yagi, A., and Hatefi, Y. (1990) J. Biol. Chem. 265, 82-88). Because of its low affinity for the above binding sites, GDP at micromolar concentrations does not lead to GTP synthesis. However, as shown in this paper, micromolar [GDP] undergoes phosphorylation in the presence of micromolar concentrations of ADP. Under these conditions, both ATP and GTP are synthesized. GDP inhibits ATP synthesis with KGDPi congruent to 7 microM, while ADP promotes GTP synthesis in a reaction that requires inorganic phosphate (apparent KPim = 2-3 mM) and is inhibited by uncouplers and inhibitors of the ATP synthase complex. The ADP-promoted GTP synthesis exhibited an "apparent" KGDPm = 4 microM and an "apparent" Vmax = 11 nmol of GTP (min.mg of protein)-1. These results were interpreted to mean that (a) micromolar [ADP] occupies sites I and II, allowing site III to bind and phosphorylate GDP, and (b) the KGDPm and Vmax calculated under these conditions represent values for the low Km-low Vmax mode of GTP synthesis, which in the absence of ADP is not detectable because of the positive cooperativity phase of GTP synthesis with the high KGDPII approximately 10(-4) M.  相似文献   

3.
Circahoral opposite-in phase fluctuations of protein syntheses and intracellular ATP content have been observed in monolayer hepatocyte cell culture. Peculiarities of protein synthesis in hepatocytes have been studied in vitro in presence of adenylic and guanylic nucleotides. Addition of exogenous ATP leads to the decrease in the level of protein synthesis and smoothing off of the fluctuations. The presence of exogenous ADP leads to the increase in protein synthesis and retaining of the amplitude of fluctuations of this process. Effect of exogenous GTP is similar to that of ATP. Different aspects of action of exogenous NTPs on the rhythms of protein synthesis have been considered.  相似文献   

4.
The F1-ATPase from Micrococcus lysodeikticus is isolated in the absence of exogenous nucleotides. After removing loosely bound nucleotides from the isolated enzyme by gel permeation chromatography, analysis for tightly bound nucleotides revealed in 14 experiments 0.4 +/- 0.1 mol ADP, 0.5 +/- 0.2 mol GDP, and 0.8 +/- 0.2 mol ATP per mol of F1. Incubation of the isolated enzyme with Mg2+ or Ca2+ did not alter the endogenous nucleotide composition of the enzyme, indicating that endogenous ATP is not bound to a catalytic site. Incubation of the enzyme with P(i) decreased the amount of tightly bound ADP and GDP but did not effect the ATP content. Hydrolysis of MgATP in the presence of sulfite raised the tightly bound ADP and lowered tightly bound GDP on the enzyme. In the reciprocal experiment, hydrolysis of MgGTP in the presence of sulfite raised tightly bound GDP and lowered tightly bound ADP. Turnover did not affect the content of tightly bound ATP on the enzyme. These results suggest that endogenous ADP and GDP are bound to exchangeable catalytic sites, whereas endogenous ATP is bound to noncatalytic sites which do not exchange. The presence of endogenous GDP on catalytic sites of isolated F1 suggests that the F0F1-ATP synthase of M. lysodeikticus might synthesize both GTP and ATP under physiological conditions. In support of this hypothesis, we have found that plasma membrane vesicles derived from M. lysodeikticus synthesize [32P]GTP from [32P]P(i) using malate as electron donor for oxidative phosphorylation.  相似文献   

5.
Samples of unmodified EF-2, EF-2 ADP-ribosylated with diphtheria toxin and NAD, and/or phosphorylated using ATP and the Ca(2+)-calmodulin dependent kinase III partially purified, were irradiated at 254 nm with 32P-labeled GDP or GTP, and analyzed by one- and two-dimensional gel electrophoresis. By this method we showed that unmodified EF-2 formed a stable complex with GDP but not with GTP, whereas phosphorylated EF-2 and ADP-ribosylated + phosphorylated EF-2 formed stable complexes even in the absence of irradiation, with GTP but not GDP. ADP-ribosylated EF-2 did not form stable complexes with either GDP or GTP. Prior ADP-ribosylation of EF-2 increased its ability to the phosphorylated. These results show that the structures of the two domains containing diphtamide 715 and the phosphorylatable threonines (between Ala 51 and Arg 60) are interdependent; modifications of these residues induce different conformational changes of EF-2 which alter the interactions of the factor with guanylic nucleotides as well with ribosomes.  相似文献   

6.
P Chidiac  J W Wells 《Biochemistry》1992,31(44):10908-10921
Muscarinic agonists and adenyl nucleotides are noncompetitive modulators of sites labeled by [35S]GTP gamma S in washed cardiac membranes from Syrian golden hamsters. Specific binding of the radioligand and its inhibition by either GTP gamma S or GDP reveals three states of affinity for guanyl nucleotides. In the absence of adenyl nucleotide, carbachol promotes an apparent interconversion of sites from higher to lower affinity for GDP; the effect recalls that of guanyl nucleotides on the binding of agonists to muscarinic receptors. In the presence of 0.1 mM ATP gamma S, the binding of [35S]GTP gamma S is increased at concentrations up to about 50 nM and decreased at higher concentrations. At a radioligand concentration of 160 pM, binding exhibits a bell-shaped dependence on the concentration of both ATP gamma S and AMP-PNP; with ADP and ATP, there is a second increase in bound [35S]GTP gamma S at the highest concentrations of adenyl nucleotide. ATP gamma S and AMP-PNP also modulate the effect of GDP, which itself emerges as a cooperative process: that is, binding of the radioligand in the presence of AMP-PNP exhibits a bell-shaped dependence on the concentration of GDP; moreover, the GDP-dependent increase in bound [35S]GTP gamma S is enhanced by carbachol. The interactions among GDP, GTP gamma S, and carbachol can be rationalized quantitatively in terms of a cooperative model involving two sites tentatively identified as G proteins. Both GTP gamma S and GDP exhibit negative homotropic cooperativity; carbachol enhances the homotropic cooperativity of GDP and induces or enhances positive heterotropic cooperativity between GDP and [35S]GTP gamma S. An analogous mechanism may underlie the guanyl nucleotide-dependent binding of agonists to muscarinic receptors. The data suggest that the binding properties of G proteins and their associated receptors reflect cooperative effects within heterooligomeric arrays; agonist-induced changes in cooperativity may facilitate the exchange of GTP for bound GDP and thereby constitute the mechanism of G protein activation in vivo.  相似文献   

7.
I A Kozlov  E N Vulfson 《FEBS letters》1985,182(2):425-428
The interaction of inorganic phosphate with native and nucleotide-depleted F1-ATPase was studied. F1-ATPase depleted of tightly bound nucleotides loses the ability to bind inorganic phosphate. The addition of ATP, ADP, GTP and GDP but not AMP, restores the phosphate binding. The nucleotides affecting the phosphate binding to F1-ATPase are located at the catalytic (exchangeable) site of the enzyme. The phosphate is thought to bind to the same catalytic site where the nucleotide is already bound. It is thought that ADP is the first substrate to bind to F1-ATPase in the ATP synthesis reaction.  相似文献   

8.
Mitochondrial F1 from the yeast Schizosaccharomyces pombe exhibits an intrinsic tryptophan fluorescence sensitive to adenine nucleotides and inorganic phosphate [Divita, G., Di Pietro, A., Deléage, G., Roux, B., & Gautheron, D.C. (1991) Biochemistry 30, 3256-3262]. The present results indicate that the intrinsic fluorescence is differentially modified by nucleotide binding to either catalytic or noncatalytic sites. Guanine or hypoxanthine nucleotides, which selectively bind to the catalytic site, produce a hyperbolic saturation monitored by fluorescence quenching at 332 nm, the maximal emission wavelength. On the contrary, adenine nucleotides, which bind to both catalytic and noncatalytic sites, exhibit a biphasic saturation. High-affinity ATP binding produces a marked quenching as opposed to the lower-affinity one. In contrast, ADP exhibits a sigmoidal saturation, with high-affinity binding producing no quenching but responsible for positive cooperativity of binding to the lower-affinity site. The catalytic-site affinity for GDP is almost 20-fold higher at pH 5.0 as compared to pH 9.0, and the high sensitivity of the method allows detection of the 10-fold lower-affinity GMP binding. In contrast, high-affinity binding of ADP, or AMP, is not pH-dependent. The selective catalytic-site saturation induces a F1 conformational change decreasing the Stern-Volmer constant for acrylamide and the tryptophan fraction accessible to iodide. ATP saturation of both catalytic and noncatalytic sites produces an additional reduction of the accessible fraction to acrylamide.  相似文献   

9.
Evidence is presented that mitochondrial ATPase has two types of sites that bind adenine nucleotides. The catalytic site, C, binds the substrates ATP, GTP, or ITP and the inhibitor guanylyl imidodiphosphate (GMP-PNP). A second type of site, R, binds ATP, ADP, adenylyl imidodiphosphate (AMP-PNP), and the chromium complexes of ATP or ADP. All of these substances binding to the R site inhibit the hydrolysis of ATP in a competitive manner; their inhibition of hydrolysis of ITP and GTP is noncompetitive. GMP-PNP inhibits oxidative phosphorylation in submitochondrial particles but AMP-PNP does not. The localization on mitochondrial membranes of sites for the binding of various antibiotics that inhibit oxidative phosphorylation is discussed.  相似文献   

10.
The mechanisms by which nucleotides stimulate the activity of the ATP-regulated K(+)-channel (KATP-channel) were investigated using inside-out patches from mouse pancreatic beta-cells. ATP produces a concentration-dependent inhibition of channel activity with a Ki of 18 microns. The inhibitory action of ATP was counteracted by ADP (0.1 mM) and GDP (0.2 mM) but not GTP (1 mM). Stimulation of channel activity was also observed when ADP, GDP and GTP were applied in the absence of ATP. The ability of ADP and GDP to reactivate KATP-channels blocked by ATP declined with time following patch excision and after 30-60 min these nucleotides were without effect. During the same time period the ability of ADP and GTP to stimulate the channel in the absence of ATP was lost. In fact, ADP now blocked channel activity with 50% inhibition being observed at approximately 0.1 mM. By contrast, GDP remained a stimulator in the absence of ATP even when its ability to evoke channel activity in the presence of ATP was lost. These observations show that nucleotide-induced activation of the KATP-channel does not involve competition with ATP for a common inhibitory site but involves other processes. The data are consistent with the idea that nucleotides modulate KATP-channel activity by a number of different mechanisms that may include both regulation of cytosolic constituents and direct interaction with the channel and associated control proteins.  相似文献   

11.
Although the binding of nucleotides at the noncatalytic sites of F1-ATPase has been regarded as probably having some type of regulatory function, only limited observations have been reported that support such a role. We present here results showing that the presence of ATP at noncatalytic sites can give a fivefold enhancement of the rate of GTP hydrolysis by the chloroplast F1-ATPase. Heat-activation of the chloroplast F1-ATPase in the presence of ATP, followed by column separation from the medium nucleotides gives an enzyme with two of the three noncatalytic sites filled with ATP. In contrast, heat-activation in the presence of ADP gives an enzyme with only one noncatalytic site filled with ADP. Such an enzyme with two noncatalytic sites empty catalyzes MgGTP hydrolysis only very slowly. The filling of a second noncatalytic site with ATP by exposure of the enzyme to ATP without Mg2+ present, followed by column separation, markedly increases the rate of GTP hydrolysis. A further increase occurs when a third noncatalytic site is filled by exposure to Mg2+ and ATP. The rate of MgATP hydrolysis is the same for the enzyme heat-activated in the presence of ATP or ADP, probably because MgATP, unlike MgGTP, rapidly binds to both catalytic and noncatalytic sites.  相似文献   

12.
The ATP synthetase of chloroplast membranes binds ADP and ATP with high affinity, and the binding becomes quasi-irreversible under certain conditions. One explanation of the function of these nucleotides is that they are transiently tightly bound during ATP synthesis as part of the catalytic process, and that the release of tightly bound ATP from one catalytic site is promoted when ADP and P(i) bind to a second catalytic site on the enzyme. Alternatively, it is possible that the tightly bound nucleotides are not catalytic, but instead have some regulatory function. We developed steady-state rate equations for both these models for photophosphorylation and tested them with experiments where two alternative substrates, ADP and GDP, were phosphorylated simultaneously. It was impossible to fit the results to the equations that assumed a catalytic role for tightly bound nucleotides, whether we assumed that both ADP and GDP, or only ADP, are phosphorylated by a mechanism involving substrate-induced release of product from another catalytic site. On the other hand, the equations derived from the regulatory-site model that we tested were able to fit all the results relatively well and in an internally consistent manner. We therefore conclude that the tightly bound nucleotides most likely do not derive from catalytic intermediates of ATP synthesis, but that substrate (and possibly also product) probably bind both to catalytic sites and to noncatalytic sites. The latter may modulate the transition of the ATP-synthesizing enzyme complex between its active and inactive states.  相似文献   

13.
Periodate-oxidized ADP, if left in aqueous solution, loses its phosphates by beta-elimination. This dephosphorylated dialdehyde compound caused rapid and irreversible inhibition of membrane-bound spinach chloroplast coupling factor 1 (CF1). Inhibition was 2.5 times faster in the light than in the dark. A high concentration of uncoupler eliminated the light stimulation. Light could be replaced by an acid-base transition. Therefore, the dialdehyde reacts with a site or sites on CF1 that become exposed by a high-energy state-induced conformational change. The substrate nucleotides ADP, ATP, GDP, and GTP protected against inhibition while Pi and the non-substrate nucleotides AMP, GMP, CTP, and UTP did not. The protection by GTP was competitive and magnesium-dependent, suggesting that the dialdehyde binds to a nucleotide-binding site. However, the corresponding UDP and CDP dialdehyde derivatives also inhibited CF1 and showed the light-stimulation effect, indicating that the adenine is not important for the binding. These derivatives could be binding to a nucleotide-binding site or to another reactive site that becomes exposed during the light-induced conformational change. In the latter case the protection by substrate nucleotides would be due to prevention of the energy-dependent conformational change.  相似文献   

14.
Conditions are reported under which ATP protects membrane-bound coupling factor 1 against sodium bromide inactivation. The presence of Mg2+ was found to be obligatory for this protection. ADP and GTP also protected the enzyme against salt inactivation but to a much smaller extent. Other nucleotides tested were ineffective. At low ATP concentrations ADP prevented the effect of ATP and modified the saturation curve for ATP from hyperbolic to sigmoidal. Treatment of chloroplasts with 0.4 M MgCl2 or 2 M LiCl resulted in inactivation of photophosphorylation. In contrast to NaBr-depleted particles the MgCl2 or LiCl-depleted chloroplasts can be reconstituted by purified coupling factor 1. A binding site for Mg2+ and two different sites for ATP upon the coupling factor 1 are suggested to explain the mechanism of their protection against salt inactivation.  相似文献   

15.
Kinetic and nucleotide binding studies have shown that submitochondrial particles from bovine heart possess three exchangeable binding sites for ADP or GDP. In order of decreasing affinity at neutral pH, these sites will be referred to as sites I, II, and III, and their respective dissociation constants as KI, KII, and KIII. In oxidative phosphorylation experiments in the presence of saturating amounts of inorganic phosphate, rapid ATP (or GTP) synthesis occurred only upon ADP (or GDP) binding to site III. The Eadie-Hofstee plots (v/[S] on the ordinate versus v on the abscissa) of the kinetics of ATP (or GTP) synthesis at variable ADP (or GDP) were, therefore, composed of an initial upward phase, indicating positive cooperativity with respect to substrate concentration, followed by a downward phase where rapid product formation took place. These data allowed calculation of KII from the upward phase and KIII (equivalent to apparent Km) from the downward phase. KI was estimated from Scatchard plots of binding data with radiolabeled ADP or GDP. Thus, together with our previous results, these findings have allowed characterization of the process of ATP or GTP synthesis by bovine-heart submitochondrial particles in terms of KI, KII, KIII, and kcat.  相似文献   

16.
The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist [3H]BK and the antagonist [3H]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for [3H]BK and a Kd of 3.8 nM for the antagonist [3H]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left [3H]NPC17731 binding unaffected, but reduced the receptor affinity for [3H]BK to a Kd of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C. The rank order of the guanosine nucleotides for [3H]BK binding reduction was GTP[gammaS] = Gpp[NH]p > GTP = GDP > GDP[betaS]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed.  相似文献   

17.
GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg2+, which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on α-tubulin, based on molecular modeling studies.  相似文献   

18.
The influence of nucleotides on 2,4-dinitrophenol (DNP)-induced K+ efflux from intact rat liver mitochondria has been studied. ATP and ADP at micromolar concentrations were found to inhibit mitochondrial potassium transport, whereas GTP, GDP, CTP, and UTP did not show tha same effect. The values of half-maximal inhibition (IC50) were approximately 20 microM for ATP and approximately 60 microM for ADP. It is suggested that adenine nucleotides exert their inhibitory action at the matrix side of the inner mitochondrial membrane since the inhibitor of adenine nucleotide translocase atractyloside at concentration of 1 microM completely removed the inhibitory effect of ATP and ADP. The mitochondrial ATPase inhibitor oligomycin (2 microg/ml) was found to reduce slightly the rate of DNP-induced K+ efflux and had no effect on inhibition by adenine nucleotides; the latter was insensitive to Mg2+ and the changes in pH. It seems likely that the regulation of potassium transport is not due to phosphorylation of the channel-forming protein but to binding of the nucleotides in specific regulatory sites. The possibility of potassium efflux from mitochondria in the presence of uncoupler via the ATP-dependent potassium channel is discussed.  相似文献   

19.
Kinetic and equilibrium dialysis substrate binding studies have been done to investigate the properties of mitochondrial GTP-AMP phosphotransferase. The results show that the enzyme has a specific requirement for divalent metal ions, namely Mg2+, Mn2+ or Ca2+ (Ca2+ is active only in the forward direction, the direction of formation of ADP). The reaction rate depends upon the ratio [Mg2+]:[substrate] rather than on the metal ion concentration alone. The enzymatic activity is influenced by NaCl (or KCl) and optimum pH occurs at 11.5 and 9.5 for guanosine and inosine nucleotides respectively. Examination of binding of substrates to the enzyme showed that there is one binding site (GTP site) for MgGTP, GTP, MgGDP or GDP per molecule of enzyme, with dissociation constants of 4.5, 4.4, 3.0, 2.2 micron respectively and one binding site (AMP site) for AMP, ADP or ATP per molecule of enzyme with dissociation constants of 20.9, 33.4 and 33.4 microns respectively. Since, within the limitations of equilibrium dialysis used in the present studies, AMP binding to one site of the enzyme could be detected only when GDP or GTP is present, the mechanism of the forward reaction may be assumed to be nearly ordered. For the reverse reaction there is no requirement of order of binding of the two nucleotides and so the mechanism of reaction may be assumed to be random.  相似文献   

20.
We studied the effect of adenosine nucleotides on several aspects of the functional activation of human peripheral blood polymorphonuclear leukocytes (PMN). Radiolabeled ATP bound to PMN in a manner suggesting the existence of specific binding sites because: 1) binding was reversed (92 +/- 6%) by 100-fold excess concentrations of unlabeled ATP but minimally by either ADP (43 +/- 12%) or GTP (37 +/- 8%); and 2) binding saturation was achieved (i.e., specific binding did not increase) above 250 microM ATP. Binding studies revealed that significant ATP hydrolysis occurred, even at low temperatures and in the presence of phosphatase inhibitors. Adenosine nucleotides activated signal transduction mechanisms in PMN because: 1) 1 to 100 microM ATP and 5'-adenylylimidodiphosphate (AMP-PNP) stimulated increased production of 1,2-diacylglycerols; 2) ATP (0.5 to 500 microM) and ADP (0.1 to 10 mM) induced increased insoluble protein kinase (PKC) activity in a dose-dependent manner when used at concentrations greater than 50 microM; 3) ATP (greater than or equal to 50 microM) induced a shift in the solubility of phorbol receptors from mostly soluble (89% in untreated cells) to mostly insoluble (68%), whereas ADP, GTP, and GDP were effective at higher concentrations; and 4) greater than or equal to 50 microM ATP stimulated increased phosphorylation of endogenous PMN proteins. AMP-PNP induced PKC activity and phosphoprotein changes that were qualitatively similar to those observed when PMN were treated with ATP, suggesting that extracellular ATP hydrolysis is not required for signal transduction to activate PKC. Functionally, ATP stimulated the secretion of specific (but not azurophil) granules because vitamin B12-binding protein and low levels of lysozyme, but not beta-glucuronidase, were released; qualitatively similar results were obtained by using AMP-PNP. These results suggest that certain adenosine nucleotides employed at physiologically relevant concentrations stimulate increased 1,2-diacylglycerol production, PKC activity, granule secretion, and endogenous phosphoprotein formation in a manner that is independent of extracellular ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号