共查询到20条相似文献,搜索用时 31 毫秒
1.
Guillot PV De Bari C Dell'Accio F Kurata H Polak J Fisk NM 《Differentiation; research in biological diversity》2008,76(9):946-957
Human mesenchymal stem cells (MSC) from adult and fetal tissues are promising candidates for cell therapy but there is a need to identify the optimal source for bone regeneration. We have previously characterized MSC populations in first trimester fetal blood, liver, and bone marrow and we now evaluate their osteogenic differentiation potential in comparison to adult bone marrow MSC. Using quantitative real-time RT-PCR, we demonstrated that 16 osteogenic-specific genes (OC, ON, BSP, OP, Col1, PCE, Met2A, OPG, PHOS1, SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were expressed in both fetal and adult MSC under basal conditions and were up-regulated under osteogenic conditions both in vivo and during an in vitro 21-day time-course. However, under basal conditions, fetal MSC had higher levels of osteogenic gene expression than adult MSC. Upon osteogenic differentiation, fetal MSC produced more calcium in vitro and reached higher levels of osteogenic gene up-regulation in vivo and in vitro. Second, we observed a hierarchy within fetal samples, with fetal bone marrow MSC having greater osteogenic potential than fetal blood MSC, which in turn had greater osteogenic potential than fetal liver MSC. Finally, we found that the level of gene expression under basal conditions was positively correlated with both calcium secretion and gene expression after 21 days in osteogenic conditions. Our findings suggest that stem cell therapy for bone dysplasias such as osteogenesis imperfecta may benefit from preferentially using first trimester fetal blood or bone marrow MSC over fetal liver or adult bone marrow MSC. 相似文献
2.
3.
4.
5.
6.
Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells 总被引:13,自引:0,他引:13
Multipotential adult mesenchymal stem cells (MSCs) are able to differentiate along several known lineages, and lineage commitment is tightly regulated through specific cellular mediators and interactions. Recent observations of a low/high bone-mass phenotype in patients expressing a loss-/gain-of-function mutation in LRP5, a coreceptor of the Wnt family of signaling molecules, suggest the importance of Wnt signaling in bone formation, possibly involving MSCs. To analyze the role of Wnt signaling in mesenchymal osteogenesis, we have profiled the expression of WNTs and their receptors, FRIZZLEDs (FZDs), and several secreted Wnt inhibitors, such as SFRPs, and examined the effect of Wnt 3a, as a representative canonical Wnt member, during MSC osteogenesis in vitro. WNT11, FZD6, SFRP2, and SFRP3 are upregulated during MSC osteogenesis, while WNT9A and FZD7 are downregulated. MSCs also respond to exogenous Wnt 3a, based on increased beta-catenin nuclearization and activation of a Wnt-responsive promoter, and the magnitude of this response depends on the MSC differentiation state. Wnt 3a exposure inhibits MSC osteogenic differentiation, with decreased matrix mineralization and reduced alkaline phosphatase mRNA and activity. Wnt 3a treatment of fully osteogenically differentiated MSCs also suppresses osteoblastic marker gene expression. The Wnt 3a effect is accompanied by increased cell number, resulting from both increased proliferation and decreased apoptosis, particularly during expansion of undifferentiated MSCs. The osteo-suppressive effects of Wnt 3a are fully reversible, i.e., treatment prior to osteogenic induction does not compromise subsequent MSC osteogenesis. The results also showed that sFRP3 treatment attenuates some of the observed Wnt 3a effects on MSCs, and that inhibition of canonical Wnt signaling using a dominant negative TCF1 enhances MSC osteogenesis. Interestingly, expression of Wnt 5a, a non-canonical Wnt member, appeared to promote osteogenesis. Taken together, these findings suggest that canonical Wnt signaling functions in maintaining an undifferentiated, proliferating progenitor MSC population, whereas non-canonical Wnts facilitate osteogenic differentiation. Release from canonical Wnt regulation is a prerequisite for MSC differentiation. Thus, loss-/gain-of-function mutations of LRP5 would perturb Wnt signaling and depress/promote bone formation by affecting the progenitor cell pool. Elucidating Wnt regulation of MSC differentiation is important for their potential application in tissue regeneration. 相似文献
7.
8.
神经干细胞的分化调控一直是发育神经生物学的重要研究课题。综述了调节胚胎和成体神经干细胞分化的细胞内在因素和外部环境因素,初步探讨了胚胎和成体神经干细胞分化机制的差异。 相似文献
9.
10.
Jelena Krstić Slavko Mojsilović Sonja S Mojsilović Juan F Santibanez 《World journal of stem cells》2021,13(11):1696-1713
Bone regeneration is a tightly regulated process that ensures proper repair and functionality after injury. The delicate balance between bone formation and reso rption is governed by cytokines and signaling molecules released during the inflammatory response. Interleukin (IL)-17A, produced in the early phase of inflammation, influences the fate of osteoprogenitors. Due to their inherent capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) contribute to bone healing and regeneration. This review presents an overview of IL-17A signaling and the leading cellular and molecular mechanisms by which it regulates the osteogenic differentiation of MSCs. The main findings demon strating IL-17A’s influence on osteoblastogenesis are described. To this end, divergent information exists about the capacity of IL-17A to regulate MSCs’ osteogenic fate, depending on the tissue context and target cell type, along with contradictory findings in the same cell types. Therefore, we summarize the data showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may help in the understanding of IL-17A function in bone repair and regeneration. 相似文献
11.
12.
Müller P Bulnheim U Diener A Lüthen F Teller M Klinkenberg ED Neumann HG Nebe B Liebold A Steinhoff G Rychly J 《Journal of cellular and molecular medicine》2008,12(1):281-291
Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell-extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation. 相似文献
13.
Laurie A. McDuffee Blanca P. Esparza Gonzalez Rodolfo Nino-Fong Enrique Aburto 《Cell and tissue research》2014,355(2):327-335
Autologous mesenchymal stem cells (MSCs) have been used as a potential cell-based therapy in various animal and human diseases. Their differentiation capacity makes them useful as a novel strategy in the treatment of tissue injury in which the healing process is compromised or delayed. In horses, bone healing is slow, taking a minimum of 6–12 months. The osteogenic capacity of equine bone marrow and muscle MSCs mixed with fibrin glue or phosphate-buffered saline (PBS) as a scaffold is assessed. Bone production by the following groups was compared: Group 1, bone marrow (BM) MSCs in fibrin glue; Group 2, muscle (M) MSCs in fibrin glue; Group 3, BM MSCs in PBS; Group 4, M MSCs in PBS and as a control; Group 5, fibrin glue without cells. BM and M MSCs underwent osteogenic stimulation for 48 h prior to being injected intramuscularly into nude mice. After 4 weeks, the mice were killed and muscle samples were collected and evaluated for bone formation and mineralization by using radiology, histochemistry and immunohistochemistry. Positive bone formation and mineralization were confirmed in Group 1 in nude mice based on calcium deposition and the presence of osteocalcin and collagen type I; in addition, a radiopaque area was observed on radiographs. However, no evidence of mineralization or bone formation was observed in Groups 2–5. In this animal model, equine BM MSCs mixed with fibrin glue showed better osteogenic differentiation capacity compared with BM MSCs in PBS and M MSCs in either carrier. 相似文献
14.
Le Blanc K 《Cytotherapy》2003,5(6):485-489
Mesenchymal stem cells (MSC) derived from adult BM or fetal liver form several mesenchymal tissues after appropriate stimulation. Reports indicate that MSC have unique immunologic properties, making them ideal for cellular therapy. MSC are not immunogenic, they do not stimulate alloreactivity, and they escape lysis by cytotoxic T-cells and natural killer (NK)-cells. Thus, MSC may be transplantable between HLA-mismatched individuals without the need for host immunosuppression. Furthermore, adult MSC appear to be immunosuppressive as they reduce alloreactivity and the formation of cytotoxic lymphocytes in vitro. In vivo, adult MSC prolong the time to rejection of mis-matched skin grafts in baboons. The immunosuppressive properties of first trimester fetal MSC are less pronounced, but inducible with IFNgamma. These findings imply a potential role for MSC, not only in the repair of damaged tissues, but also in the manipulation of immune responses. 相似文献
15.
Ichida M Yui Y Yoshioka K Tanaka T Wakamatsu T Yoshikawa H Itoh K 《FEBS letters》2011,585(24):4018-4024
We showed that the migration, morphology and adhesiveness of undifferentiated mesenchymal cells dramatically changed during osteogenic differentiation. The migration of these cells was transiently upregulated early in osteogenic differentiation. At a later stage, migration was decreased but adhesiveness was increased. Furthermore, Cdc42 and Rac1 Rho-family small GTPases were activated at early stages of differentiation and the phosphorylation level of FAK decreased as differentiation progressed. We also showed cell migration was promoted by inhibition of the Rho-ROCK-myosin signaling. Finally, using a mouse model of ectopic bone formation, we confirmed that treatment with ROCK inhibitor, Y-27632 increased cell movement into bone formation sites, resulting in enhanced osteogenesis. These results provide a new insight into the link between cell migration and osteogenic differentiation. 相似文献
16.
17.
Bone-marrow-derived mesenchymal stem cells (MSCs) are candidates for regeneration applications in musculoskeletal tissue such
as cartilage and bone. Various soluble factors in the form of growth factors and cytokines have been widely studied for directing
the chondrogenic and osteogenic differentiation of MSCs, but little is known about the way that the composition of extracellular
matrix (ECM) components in three-dimensional microenvironments plays a role in regulating the differentiation of MSCs. To
define whether ECM components influence the regulation of osteogenic and chondrogenic differentiation by MSCs, we encapsulated
MSCs in poly-(ethylene glycol)-based (PEG-based) hydrogels containing exogenous type I collagen, type II collagen, or hyaluronic
acids (HA) and cultured them for up to 6 weeks in chondrogenic medium containing transforming growth factor-β1 (10 ng/ml)
or osteogenic medium. Actin cytoskeleton organization and cellular morphology were strongly dependent on which ECM components
were added to the PEG-based hydrogels. Additionally, chondrogenic differentiation of MSCs was marginally enhanced in collagen-matrix-based
hydrogels, whereas osteogenic differentiation, as measured by calcium accumulation, was induced in HA-containing hydrogels.
Thus, the microenvironments created by exogenous ECM components seem to modulate the fate of MSC differentiation. 相似文献
18.
The objective of this study is to evaluate the in vitro and in vivo osteogenic potential of rat bone marrow mesenchymal stem cells (BM-MSCs) using chitosan/hydroxyapatite (C/HAp) microbeads as encapsulation matrix under osteoinductive medium and dynamic culture conditions. The degradation characteristics of C/HAp microbeads were evaluated under in vitro and in vivo conditions for 180 days. BM-MSCs were encapsulated in C/HAp microbeads with >?85% viability, and were cultured in a slow turning lateral vessel-type rotating bioreactor simulating microgravity conditions for 28 days, under the effect of osteogenic inducers. MTT assay showed that the metabolic activity of encapsulated cells was preserved >?80% after a week. In vitro experiments confirmed that the encapsulated BM-MSCs differentiated into osteoblastic cells, formed bone-like tissue under osteogenic microgravity bioreactor conditions. Preliminary in vivo study indicated C/HAp microbeads containing BM-MSCs were able to repair the surgically-created small bone defects in the rat femur. BM-MSCs-C/HAp composite microbeads may have potential for modular bone regeneration. 相似文献
19.
Effects of culture conditions on osteogenic differentiation in human mesenchymal stem cells 总被引:1,自引:0,他引:1
Song SJ Jeon O Yang HS Han DK Kim BS 《Journal of microbiology and biotechnology》2007,17(7):1113-1119
Human bone marrow-derived mesenchymal stem cells (hBMMSCs) must differentiate into osteogenic cells to allow for successful bone regeneration. In this study, we investigated the effects of different combinations of three soluble osteogenic differentiation-inducing factors [L-ascorbic acid (AC), beta-glycerophosphate (betaG), and bone morphogenic protein-2 (BMP-2)] and the presence of a hydroxyapatite (HA) substrate on hBMMSC osteogenic differentiation in vitro. hBMMSCs were cultured in medium containing various combinations of the soluble factors on culture plates with or without HA coating. After 7 days of culture, alkaline phosphatase (ALP) activity, calcium deposition, and osteoprotegerin (OPG) and osteopontin (OPN) expression were measured. The effects of individual and combined factors were evaluated using a factorial analysis method. BMP-2 predominantly affected expression of early markers of osteogenic differentiation (ALP and OPG). HA had the highest positive effect on OPN expression and calcium deposition. The interaction between AC, betaG, and HA had the second highest positive effect on ALP activity. 相似文献
20.