首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat adipocyte plasma membranes sacs have been shown to be a sensitive and specific system for studying prostaglandin binding. The binding of prostaglandin E1 and prostaglandin A1 increases linearly with increasing protein concentration, and is a temperature-sensitive process. Prostaglandin E1 binding is not ion dependent, but is enhanced by GTP. Prostaglandin A1 binding is stimulated by ions, but is not affected by GTP.Discrete binding sites for prostaglandin E1 and A1 were found. Scatchard plot analysis showed that the binding of both prostaglandins was biphasic, indicating two types of binding sites. Prostaglandin E1 had association constants of 4.9 · 109 1/mole and 4 · 108 1/mole, while the prostaglandin A1 association constants and binding capacities varied according to the ionic composition of the buffer. In Tris-HCl buffer, the prostaglandin A1 association constants were 8.3 · 108 1/mole and 5.7 · 107 1/mole, while in the Krebs—Ringer Tris buffer, the results were 1.2 · 109 1/mole and 8.6 · 106 1/mole.Some cross-reactivity between prostaglandin E1 and A1 was found for their respective binding sites. Using Scatchard plot analysis, it was found that a 10-fold excess of prostaglandin E1 inhibited prostaglandin A1 binding by 1–20% depending upon the concentration of prostaglandin A1 used. Prostaglandin E1 competes primarily for the A prostaglandin high-affinity binding site. Similar Scatchard analysis using a 20-fold excess of prostaglandin A1 inhibited prostaglandin E1 binding by 10–40%. Prostaglandin A1 was found to compete primarily for the E prostaglandin low-affinity receptor.All of the bound [3H]prostaglandin E1, but only 64% of the bound [3H]-prostaglandin A1 can be recovered unmetabolized from the fat cell membrane. There is no non-specific binding of prostaglandin E1, but 10–15% of prostaglandin A1 binding to adipocyte membranes is non-specific. Using a parallel line assay to measure relative affinities for the E binding site, prostaglandin E1 > prostaglandin A2 > prostaglandin F. Prostaglandin E2 and 16,16-dimethyl prostaglandin E2 were equipotent with prostaglandin E1, while other prostaglandins had lower relative affinities. 7-Oxa-13-prostynoic acid does not appear to antagonize prostaglandin activity in adipocytes at the level of the receptor.  相似文献   

2.
The conversion of 1-14C-arachidonic acid into prostaglandin E2 was studied in lysed human platelets. Optimum production of the labeled reaction product was obtained when reduced glutathione and hydroquinone were included in the incubations. The labeled product was characterized by silicic acid column chromatography, thin-layer chromatography, and gas-liquid chromatography and was found to behave as standard prostaglandin E2. The results indicate that the prostaglandin synthetase in the human blood platelet is similar to prostaglandin synthetases found in other tissues.  相似文献   

3.
Increased production of prostaglandin D2 was recently demonstrated in patients with systemic mastocytosis. One female patient investigated with mastocytosis was found to have overproduction of prostaglandin D2 of such magnitude (150-fold above normal) that it provided the unique opportunity to delineate the metabolic fate of endogenously synthesized prostaglandin D2. A five percent aliquot of a twenty-four hour urine collection from the patient was extracted, purified by silicic acid chromatography, methylated, and finally subjected to high pressure liquid chromatography. Column fractions collected were derivatized and analyzed by gas chromatography-mass spectrometry. Increased quantities of sixteen urinary metabolites were identified and included a series of metabolites retaining the PGD-ring as well as series of metabolites with a PGF-ring. PGF-ring metabolites were excreted in approximately 4-fold greater relative abundance than PGD-ring metabolites. More than one apparent isomeric form of some PGF-ring metabolites were found. The predominant urinary metabolite was 2,3-dinor-prostaglandin F2. This study provides evidence that endogenously synthesized prostaglandin D2 is converted in substantial part to prostaglandin F2 metabolites in humans.  相似文献   

4.
Methodology for measurement and characterization of prostaglandin binding to membranes has been developed. The binding assay was used to study the presence of prostaglandin receptors in high purified cell fractions derived from rat liver. High affinity binding receptors which have a saturation value of 1.0 pmole/mg protein and a dissociation constant of 1.2 nM were found exclusively in the plasma membrane. High affinity receptors were not found in cell fractions containing nuclei, rough microsomes. Golgi complex or mitochondria. The binding by other prostaglandins was competitive with prostaglandin E1. Competitive binding studies were used to obtain dissociation constants for prostaglandins F1α, F2α, B1, B2, A1, A2, and 15-keto prostaglandin E2 which were 1100, 100, 300, 180, 16. 16 and 700 nM, respectively. Eicosa-5.8.11.19-tetraynoic acid, an inhibitor of prostaglandin synthesis did not bind appreciably to the prostaglandin E receptor, whereas two prostaglandin analogues, which have high physiological activity compete effectively with prostaglandin E1 for the receptor. Thus, the binding receptor for the E-type prostaglandins is highly specific both with respect to cell localization as well as the type of substrate. Numerical routines for the fitting of the data and a procedure for the determination of the specific activity of the labelled prostaglandin are provided.  相似文献   

5.
The levels of prostaglandin F found in human and rabbit plasma were determined by the chemically modified bacteriophage assay.Prostaglandin F2α was coupled covalently to bacteriophage T4 using carbodiimide as cross linking agent and the conjugated phage could be inactivated by anti-prostaglandin F2α antibodies. Prostaglandins specifically inhibited the modified phage inactivation caused by antiserum and as little as 200 picograms of prostaglandin F2α could be detected by this system. Anti-prostaglandin F2α antibodies had a high specificity toward prostaglandin F2α and exhibited a very low degree of cross reaction to the other prostaglandin derivatives. The concentration of the extracted prostaglandin F2α from the plasma containing exogenous prostaglandin F2α could be determined with a high recovery.In normal human males and in male rabbits, 0.300.82 and 0.421.22 nanograms of prostaglandin F per ml of plasma were found, respectively. These levels of prostaglandin F in plasma agree with those determined by the radioimmunoassay.  相似文献   

6.
7.
Human erythrocytes were found to contain two prostaglandin metabolizing enzymes: a prostaglandin E 9-ketoreductase catalyzing the reduction of prostaglandin E2 to form prostaglandin F and a 15-hydroxyprostaglandin dehydrogenase that catalyzes the oxidation of prostaglandin F to form 15-ketoprostaglandin F. Both enzymes are found in the cytoplasmic fraction of erythrocytes and both enzymes use the triphosphopyridine nucleotides as cofactors more effectively than the diphosphopyridine nucleotides. These two enzymes were partially purified from erythrocyte homogenates and some of their properties were studied.  相似文献   

8.
Effects of acetaminophen on the renal inner medullary production of prostaglandin E2 and F were compared with the well-known effects of aspirin on this process. Acetaminophen was found to elicit a dose-dependent inhibition of both prostaglandin E2 and F accumulation in media with a Ki of 100–200 μM. This inhibition could not be accounted for by increased accumulation of prostaglandins within slices. Acetaminophen inhibition was reversed by removal of acetaminophen during the incubation or by addition of arachidonic acid. Similar manipulations did not reverse aspirin or indomethacin-mediated inhibition of prostaglandin synthesis. Thin-layer and gas chromatographic analysis of acetaminophen following incubation with slices demonstrated that this material was identical to authentic acetaminophen. This, in addition to the lack of an effect of glutathione on inhibition, suggests that acetaminophen does not have to be metabolized to exert this inhibition. Arachidonic acid did not alter the metabolism or increase the efflux of acetaminophen. Lower levels of prostaglandin E2 observed with 5 mM acetaminophen and 1 mM aspirin caused a corresponding decrease in cyclic AMP content. Removal of acetaminophen from the second incubation or addition of arachidonic acid caused increases in both prostaglandin E2 and cyclic AMP. Aspirin inhibition of cyclic AMP content was not reversed by similar manipulations. In vivo inhibition of inner medullary prostaglandin E2 and prostaglandin F synthesis was observed 2 h after a 375 mg/kg, intraperitoneal injection of acetaminophen. These data suggest that acetaminophen, like aspirin, is capable of reducing tissue prostaglandin synthesis. However, the mechanisms by which these two analgesic and antipyretic agents elicit their inhibition of prostaglandin synthesis are quite different.  相似文献   

9.
Injection of cholera toxin in vivo into loops of intestine in rats caused the production of an exudate. This was found to contain prostaglandin E2 by assay on the rat stomach strip and by thin-layer chromatography. The amounts found ranged from 20 to 40 ng per loop of intestine. Introduction of 30 ng of prostaglandin E2 into intestinal loops caused the production of an exudate similar in volume to that found after the introduction of cholera toxin. These results indicate that the exudate in cholera is caused by the action of prostaglandin liberated by the enterotoxin. It is suggested that an inhibitor of prostaglandin release could be added to the solutions used in treatment for the restoration of fluids and electrolytes, with the object of blocking the action of toxin still present in the intestinal lumen, thereby achieving a more rapid therapeutic result.  相似文献   

10.
We have previously demonstrated that decreased cortical prostaglandin metabolism can contribute significantly to an increase in renal tissue levels and activity of prostaglandin E2 in bilateral ureteral obstruction, a model of acute renal failure. In the present study, we have further investigated whether alterations in prostaglandin metabolism can occur in a nephrotoxic model of acute renal failure. Prostaglandin synthesis, prostaglandin E2 metabolism (measured as both prostaglandin E2-9-ketoreductase and prostaglandin E2-15-hydroxydehydrogenase activity), and tissue concentration of prostaglandin E2 were determined in rabbit kidneys following an intravenous administration of uranyl nitrate (5 mg/kg). No changes in the rates of cortical microsomal prostaglandin E2 and prostaglandin F synthesis were noted at the end of 1 and 3 days, while medullary synthesis of prostaglandin E2 fell by 47% after 1 day and 43% after 3 days. Cortical cytosolic prostaglandin E2-9-ketoreductase activity was found to be decreased by 36% and 76% after 1 and 3 days respectively. No significant changes were noted in cortical cytosolic prostaglandin E2-15-hydroxydehydrogenase activity after 3 days. Cortical tissue levels of prostaglandin E2 increased by 500% at the end of 3 days. These data demonstrate that in nephrotoxic acute renal failure, decreased prostaglandin metabolism (i.e., prostaglandin E2-9-ketoreductase activity) can result in increased tissue levels of prostaglandin E2 in the absence of increased prostaglandin synthesis and suggest that alterations in prostaglandin metabolism may be an important regulator of prostaglandin activity in acute renal failure.  相似文献   

11.
Separation and identification of prostaglandins in canine bile was performed by extraction and thin layer chromatography. The system provided tentative identification of the prostaglandin F compounds as the major prostaglandin subgroup present in bile. The prostaglandin was subsequently purified on silicic acid columns and quantitated by radioimmunoassay with tritiated PGF and anti PGF antibody employing the double antibody technique. Basal levels in hepatic bile were found to be 1028 ± 98 pg/ml.  相似文献   

12.
13.
Adenylate cyclase (EC 4.6.1.1) was studied in membrane preparations of reticulocyte-rich blood obtained from phenylhydrazine-treated rabbits and compared to that of untreated animals.Basal and fluoride-stimulated activities were decreased 2- and 4-fold, respectively, during the process of maturation.Catalytic parameters such as time course, protein, ATP, Mg2+ concentration curves and Km have been determined and were found to be similar in the reticulocyte and the erythrocyte.Adenylate cyclase was sensitive to GTP, 5′-guanylyl imidodiphosphate, prostaglandin E1 and prostaglandin E2. Activation by prostaglandin E1 was higher than that produced by prostaglandin E2. Only additive effect was found when 5′-guanylyl imidodiphosphate or GTP was added to hormone-stimulated activity. The sensitivity of the enzyme to these effectors was decreased over the transition reticulocyte-erythrocyte.In either cell the enzyme was not activated by catecholamines (epinephrine, norepinephrine, isoproterenol).  相似文献   

14.
Mouse myeloid leukemia cells (Ml) were induced to differentiate into mature macrophages and granulocytes by various inducers. The differentiated Ml cells synthesized and released prostaglandins, whereas untreated Ml cells did not. When the cells were prelabelled with [14C]arachidonate, the major prostaglandins released into the culture media were found to be prostaglandin E2, D2, and F in an early stage of differentiation, but the mature cells produced predominantly prostaglandin E2. The synthesis and release of prostaglandins were completely inhibited by indomethacin. Dexamethasone, a potent inducer of differentiation of Ml cells, did not induce production of prostaglandins in resistant Ml cells that could not differentiate even with a high concentration of dexamethasone. These results suggest that production of prostaglandins in Ml cells is closely associated with differentiation of the cells. Homogenates of dexamethasone-treated Ml cells converted arachidonate to prostaglandins, but this conversion was scarcely observed with homogenates of untreated Ml cells. Dexamethasone and the other inducers stimulated the release of arachidonate from phospholipids. Therefore, induction of prostaglandin synthesis during differentiation of Ml cells may result from induction of prostaglandin synthesis activity and stimulation of the release of arachidonate from cellular lipids. Lysozyme activity, which is a typical biochemical marker of macrophages, was induced in Ml cells by prostaglandin E2 or D2 alone, as well as by inducers of differentiation of the cells, but it was not induced by arachidonate or prostaglandin F. These results suggest that prostaglandin synthesis is important in differentiation of myeloid leukemia cells.  相似文献   

15.
Arachidonic acid is released from specific glycerophospholipids in human amnion and is used to synthesize prostaglandins that are involved in parturition. In an investigation of the regulation of prostaglandin production in amnion, the effects of isoproterenol on discs of amnion tissue maintained were examined. Isoproterenol caused a large but transitory increase in the amount of cyclic AMP in amnion discs and this was accompanied by a sustained stimulation of the release of arachidonic acid (but not palmitic acid or stearic acid) and prostaglandin E2. The dependencies of cyclic AMP accumulation, arachidonic acid mobilization and prostaglandin E2 release on the concentration of isoproterenol were similar, each response was maximal at 10−6 M isoproterenol and was inhibited by propranolol. Dibutyryl cyclic AMP stimulated the release of prostaglandin E2 from amnion discs. Although prostaglandin E2, when added to amnion discs caused an accumulation of cyclic AMP, it did not appear to mediate isoproterenol-induced accumulation of cyclic AMP since the latter effect was insensitive to indomethacin in concentrations at which prostaglandin production was inhibited greatly. These data support the proposition that catecholamines, found in increasing amounts in amniotic fluid during late gestation, my be regulators of prostaglandin production by the amnion.  相似文献   

16.
In vitro cultured bone cells were found to be responsive to hormones and physical forces. A simple device has been developed which enables the direct application of physical forces to tissue culture dishes to which cells are firmly attached. The physical forces created a deformation of the dish. It was found that prostaglandin E2 synthesis underwent a rapid increase, reaching a maximum after 20 min and then declined. Concurrent with the increase in prostaglandin E2 was an increase in cyclic AMP production, having a maximum around 15 min. The increase in cyclic AMP was blocked by indomethacin, the prostaglandin E2 synthesis inhibitor, indicating the dependence of cyclic AMP production on the de novo synthesis of prostaglandin E2. Prostaglandin E2 added to cells mimicked the effect of physical forces on the production of cyclic AMP. The increase in cyclic AMP resulted from an early rise in adenyl cyclase activity (within 5 min) and a later (10 min) increase in phosphodiesterase activity. The same physical forces also stimulatedthe incorporation of thymidine into DNA after 24 h. On addition of prostaglandin E2 the increase in DNA synthesis was also mimicked. Pretreatment of the cells with indomethacin abolished the effect of physical forces on DNA synthesis.The results suggest a stimulus receptor mechanism for physical forces which, like hormonal effectors, are mediated by prostaglandins and stimulate cyclic AMP and DNA synthesis.We believe that physical forces stimulate bone remodelling through such a stimulus receptor system, mediated by prostaglandins.  相似文献   

17.
The prostaglandin calcium association constants and calcium transport rates are reported. The calcium association constants for prostaglandins B2 and E2 were similar to one another, but lower than those of the ionophores A23187 and X537A. Using a Pressman cell, the ionophores A23187 and X537A, as well as prostaglandin B2, were found to transport calcium through an organic phase, while the prostaglandin E2 calcium transport rate was not appreciable in the artifical system.  相似文献   

18.
Glass adherent splenic T cells, cultured in the presence of prostaglandin E2 (10?5M), were found to elicit a factor capable of nonspecifically suppressing PHA- and LPS-induced mitogenesis. Cells from C57B1/6J, Balb/C, and C3H/He mice were all capable of producing this suppressor factor, although some degree of variability in the response of cells from C3H mice to the factor was observed. The suppressor (designated prostaglandin-induced T-cell derived suppressor, PITS) was characterized biochemically and it was found that the activity was resistant to boiling, and treatment with RNase and DNase, yet was sensitive to treatment with proteinase K, trypsin, and Pronase. Further, PITS supernatants were found to contain at least two suppressors with approximate molecular weights of 35,000 (PITSα) and 5000 (PITSβ). Results from experiments with cycloheximide-treated glass-adherent T cells indicate that prostaglandin E2 may function by inducing the release rather than de novo synthesis of the PITS. These results indicate that the reported overall suppressive effect of prostaglandin E2 on lymphocytes may in part be due to the release by certain T cells of a suppressive factor.  相似文献   

19.
Two prostaglandin antagonists, polyphloretin phosphate (PPP) and 7-oxa-13-prostynoic acid (EC-I-148) were examined for their ability and selectivity to block the vasoactive actions of prostaglandin E2 and 5-hydroxytryptamine on isolated human umbilical arteries. Polyphloretin phosphate was found to be a weak antagonist of prostaglandin E2 and exhibited a low degree of selectivity since responses to 5-hydroxytryptamine were also blocked. EC-I-148 (3.25 × 10?5M) demonstrated a strong and selective antagonism to the contractions produced by prostaglandin E2 because contractions to 5-hydroxytryptamine were not altered. EC-I-148 contracted umbilical artery strips in concentrations which antagonized responses to PGE2.  相似文献   

20.
In the present investigation, we found that among the prostanoids that human amnion cells, which are maintained in monolayer culture, secrete into the culture medium, prostaglandin E2 is by far the predominant one. In the presence of inhibitors of prostaglandin synthase, the production of prostaglandin E2 by these cells is abolished. Amnion cells maintained in the presence of fetal calf serum produce greater quantities of prostaglandin E2 than do cells maintained in serumless medium. In the amnion cells, there is little or no metabolism of prostaglandin E2; this also is true of amnion tissue. The unique characteristics of prostaglandin biosynthesis and metabolism by human amnion cells in monolayer culture are identical with those of human amnion tissue. Hence, we suggest that amnion cells in culture constitute an excellent model for investigations of the regulation of prostaglandin E2 biosynthesis in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号