首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel microgonotropens (MGTs) comprised of hairpin N-propylaminepyrrole polyamides linked to a Hoechst 33258 (Ht) analogue (3 and 4) were synthesized on solid phase by adopting an Fmoc technique using a series of HOBt mediated coupling reactions. The dsDNA-binding properties of MGTs 3 and 4 were determined by thermal denaturation experiments. Both MGTs were found to be selective for their nine-bp match dsDNA sequence 9 and were less tolerant of G/C bp substitutions in the binding region than linear progenitor MGT 1. MGT 3 was intolerant of a G/C substitution located in the middle of the binding region and did not bind to sequences 13 and 14. MGT 4 also did not bind to sequence 13, and its linker-bound Ht moiety was found to be more sensitive to a G/C substitution in the Ht-binding target, as demonstrated by the lack of binding to sequence 16.  相似文献   

2.
A series of hairpin pyrrole/imidazole polyamides linked to a Hoechst 33258 (Ht) analogue (5-7) were synthesized on solid-phase by adopting an Fmoc technique using a series of PyBOP/HOBt mediated coupling reactions. The dsDNA binding properties of Ht-polyamides 5-7 were determined by thermal denaturation experiments. Hairpin Ht-polyamides 5-7 bound to dsDNA sequences 16 and 18 show DeltaTm values that are 14-18 degrees higher than linear Ht-polyamides bound to the same sequences. All three Ht-polyamides were found to be selective for their 9-bp match dsDNA sequences, supporting a relative stronger interaction of an Im/Py anti-parallel dimer with an appropriately positioned G/Cbp rather than sequences containing only A/Tbps. In addition, Ht-polyamides 5 and 7 showed a 20-fold preference for a properly placed G/Cbp over a C/Gbp, while 6 showed a 10-fold preference.  相似文献   

3.
Synthetic polyamides composed of three types of aromatic amino acids, N-methylimidazole (Im), N-methylpyrrole (Py) and N-methyl-3-hydroxypyrrole (Hp) bind specific DNA sequences as antiparallel dimers in the minor groove. The side-by-side pairings of aromatic rings in the dimer afford a general recognition code that allows all four base-pairs to be distinguished. To examine the structural consequences of changing the DNA sequence context on T.A recognition by Hp/Py pairs in the minor groove, crystal structures of polyamide dimers (ImPyHpPy)(2) and the pyrrole counterpart (ImPyPyPy)(2) bound to the six base-pair target site 5'-AGATCT-3' in a ten base-pair oligonucleotide have been determined to a resolution of 2.27 and 2.15 A, respectively. The structures demonstrate that the principles of Hp/Py recognition of T.A are consistent between different sequence contexts. However, a general structural explanation for the non-additive reduction in binding affinity due to introduction of the hydroxyl group is less clear. Comparison with other polyamide-DNA cocrystal structures reveals structural themes and differences that may relate to sequence preference.  相似文献   

4.
In order to expand the recognition code by hairpin polyamides to include DNA sequences of the type 5'-CWWC-3' two polyamides, PyPyPyPy-(R)(H2N)gamma-ImPyPyIm-beta-Dp (1) and PyPyPyPy-(R)(H2N)gamma-ImPy-beta-Im-beta-Dp (2) were synthesized which have in common an Py/Im pair in the terminal position for targeting C x G but differ with respect to internal placement of a beta-alanine residue. The equilibrium association constants (Ka) were determined at four DNA sites which differ at a single common position, 5'-TNTACA-3' (N = T, A, G, C). Quantitative DNase I footprint titration experiments reveal that the eight-ring hairpin PyPyPyPy-(R)(H2N)gamma-ImPyPyIm-beta-Dp (1) binds the four binding sites with similar affinities, Ka = 1.3-1.9 x 10(10) M(-1) indicating that there is no preference for the position N. In contrast, a redesigned polyamide PyPyPyPy-(R)(H2N)gamma-ImPy-beta-Im-beta-Dp (2) that places an internal flexible aliphatic beta-alanine to the 5'-side of a key imidazole group bound the match site 5'-TCTACA-3' with high affinity and good sequence discrimination (Ka(match) = 4.9 x 10(10) M(-1) and the single base pair mismatch sites with 5- to 25-fold lower affinity). These results expand the repertoire of sequences targetable by hairpins and emphasize the importance of beta-alanine as a key element for minor groove recognition.  相似文献   

5.
NMR analysis and molecular dynamics simulations of d(GGTAATTACC)2 and its complex with a tetrahydropyrimidinium analogue of Hoechst 33258 suggest that DNA minor groove recognition in solution involves a combination of conformational selection and induced fit, rather than binding to a preorganised site. Analysis of structural fluctuations in the bound and unbound states suggests that the degree of induced fit observed is primarily a consequence of optimising van der Waals contacts with the walls of the minor groove resulting in groove narrowing through: (i) changes in base step parameters, including increased helical twist and propeller twist; (ii) changes to the sugar–phosphate backbone conformation to engulf the bound ligand; (iii) suppression of bending modes at the TpA steps. In contrast, the geometrical arrangement of hydrogen bond acceptors on the groove floor appears to be relatively insensitive to DNA conformation (helical twist and propeller twist). We suggest that effective recognition of DNA sequences (in this case an A tract structure) appears to depend to a significant extent on the sequence being flexible enough to be able to adopt the geometrically optimal conformation compatible with the various binding interactions, rather than involving ‘lock and key’ recognition.  相似文献   

6.
Chiral hairpin polyamides linked to a Hoechst 33258 analogue at the -position of the hairpin turn amino acid (1, 2) were synthesized on solid phase by adopting Fmoc and ivDde techniques. The DNA-binding properties of enantiomeric conjugates 1 and 2, and N-terminal linked conjugate 3 for 8–14 bp sequences were determined by spectrofluorometric and thermal melting studies. Conjugates 1 and 2 recognize a 10 bp sequence, while conjugate 3 recognizes a 9 bp sequence. Interestingly, R-enantiomer 1 exhibited 10- to 30-fold higher binding affinities than S-enantiomer 2 for the DNA sequences studied. These binding differences were accounted for by molecular modeling studies, which revealed that the amide proton nearest to the chiral center in R-conjugate 1 is better positioned to form hydrogen bonds to the DNA bases, while S-conjugate 2 does not.  相似文献   

7.
Crescent-shaped synthetic ligands containing aromatic amino acids have been designed for specific recognition of predetermined DNA sequences in the minor groove of DNA. Simple rules have been developed that relate the side-by-side pairings of Imidazole (Im) and Pyrrole (Py) amino acids to their predicted target DNA sequences. We report here thermodynamic characterization of the DNA-binding properties of the six-ring hairpin polyamide, ImImPy-gamma-PyPyPy-beta-Dp (where gamma = gamma-aminobutyric acid, beta = beta-alanine, and Dp = dimethylaminopropylamide). Our data reveal that, at 20 degrees C, this ligand binds with a relatively modest 1.8-fold preference for the designated match site, 5'-TGGTA-3', over the single base pair mismatch site, 5'-TGTTA-3'. By contrast, we find that the ligand exhibits a 102-fold greater affinity for its designated match site relative to the double base pair mismatch site, 5'-TATTA-3'. These results demonstrate that the energetic cost of binding to a double mismatch site is not necessarily equal to twice the energetic cost of binding to a single mismatch site. Our calorimetrically measured binding enthalpies and calculated entropy data at 20 degrees C reveal the ligand sequence specificity to be enthalpic in origin. We have compared the DNA-binding properties of ImImPy-gamma-PyPyPy-beta-Dp with the hairpin polyamide, ImPyPy-gamma-PyPyPy-beta-Dp (an Im --> Py "mutant"). Our data reveal that both ligands exhibit high affinities for their designated match sites, consistent with the Dervan pairing rules. Our data also reveal that, relative to their corresponding single mismatch sites, ImImPy-gamma-PyPyPy-beta-Dp is less selective than ImPyPy-gamma-PyPyPy-beta-Dp for its designated match site. This result suggests, at least in this case, that enhanced binding affinity can be accompanied by some loss in sequence specificity. Such systematic comparative studies allow us to begin to establish the thermodynamic database required for the rational design of synthetic polyamides with predictable DNA-binding affinities and specificities.  相似文献   

8.
J Aymami  C M Nunn    S Neidle 《Nucleic acids research》1999,27(13):2691-2698
The crystal structure of the non-self-complementary dodecamer DNA duplex formed by d(CG[5BrC]ATAT-TTGCG) and d(CGCAAATATGCG) has been solved to 2.3 A resolution, together with that of its complex with the tris-benzimidazole minor groove binding ligand TRIBIZ. The inclusion of a bromine atom on one strand in each structure enabled the possibility of disorder to be discounted. The native structure has an exceptional narrow minor groove, of 2.5-2.6 A in the central part of the A/T region, which is increased in width by approximately 0.8 A on drug binding. The ligand molecule binds in the central part of the sequence. The benzimidazole subunits of the ligand participate in six bifurcated hydrogen bonds with A:T base pair edges, three to each DNA strand. The presence of a pair of C-H...O hydrogen bonds has been deduced from the close proximity of the pyrrolidine group of the ligand to the TpA step in the sequence.  相似文献   

9.
Stephen Neidle 《Biopolymers》1997,44(1):105-121
This review surveys the crystal structures between minor groove drugs and oligonucleotides, of which over thirty have now been determined. The various factors that are involved in the observed A/T sequence selectivity of these drugs are examined in structural terms. The roles of, in particular, hydrogen-bond recognition and sequence-dependent groove width, are assessed, and as a consequence the minor groove drugs have been classified into two categories, dependent on the relative roles played by these two factors in sequence recognition. Implications for the recognition of non-A/T sequences are discussed. © 1997 John Wiley & Sons, Inc. Biopoly 44: 105–121, 1997  相似文献   

10.
Consideration is given to alternative approaches to the development of DNA sequences selective binding agents because of their potential applications in diagnosis and treatment of cancer as well as in molecular biology. The concept of lexitropsins, or information-reading molecules, is introduced within the antigene strategy as an alternative to, and complementary with, the antigene approach for cellular intervention and gene control The chemical, physical and paharmacological factors involved in the design of effective lexitropsins are discussed and illustrated with experimental results. Among the factors contributing to the molecular recognition processes are: the presence and disposition of hydrogen bond accepting and donating groups, ligand shape, chirality, stereochemistry, flexibility and charge. For longer ligands, such as are required to target unique sequences in biological systems (14–16 base pairs), the critical feature is the phasing or spatial corresponding between repeat units in the ligand and receptor. The recently discovered 2:1 lexitropsin-DNA binding motif provides a further refinement in molecular recognition in permitting discrimination between GC and CG base pairs. The application of these factors in the design and synthesis of novel agents which exhibits anticancer, antiviral and antitretroviral properties, and inhibition of critical cellular enzymes including topoisomerases is discussed. The emerging evidence of a relationship between sequence selectivity of the new agents and the biological responses they invoke is also described.  相似文献   

11.
Fluorescence titration measurements have been used to examine the binding interaction of a number of analogues of the bis -benzimidazole DNA minor groove binding agent Hoechst 33258 with the decamer duplex d(GCAAATTTGC)2. The method of continuous variation in ligand concentration (Job plot analysis) reveals a 1:1 binding stoichiometry for all four analogues; binding constants are independent of drug concentration (in the range [ligand] = 0.1-5 microM). The four analogues studied were chosen in order to gain some insight into the relative importance of a number of key structural features for minor groove recognition, namely (i) steric bulk of the N -methylpiperazine ring, (ii) ligand hydrophobicity, (iii) isohelicity with the DNA minor groove and (iv) net ligand charge. This was achieved, first, by replacing the bulky, non-planar N -methylpiperazine ring with a less bulky planar charged imidazole ring permitting binding to a narrower groove, secondly, by linking the N -methylpiperazine ring to the phenyl end of the molecule to give the molecule a more linear, less isohelical conformation and, finally, by introducing a charged imidazole ring in place of the phenolic OH making it dicationic, enabling the contribution of the additional electrostatic interaction and extended conformation to be assessed. Delta G values were measured at 20 degrees C in the range -47.6 to -37.5 kJ mol-1 and at a number of pH values between 5.0 and 7.2. We find a very poor correlation between Delta G values determined by fluorescence titration and effects of ligand binding on DNA melting temperatures, concluding that isothermal titration methods provide the most reliable method of determining binding affinities. Our results indicate that the bulky N -methylpiperazine ring imparts a large favourable binding interaction, despite its apparent requirement for a wider minor groove, which others have suggested arises in a large part from the hydrophobic effect. The binding constant appears to be insensitive to the isohelical arrangement of the constituent rings which in these analogues gives the same register of hydrogen bonding interactions with the floor of the groove.  相似文献   

12.
13.
Binding of Hoechst 33258 to the minor groove of B-DNA   总被引:28,自引:0,他引:28  
An X-ray crystallographic structure analysis has been carried out on the complex between the antibiotic and DNA fluorochrome Hoechst 33258 and a synthetic B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G. The drug molecule, which can be schematized as: phenol-benzimidazole-benzimidazole-piperazine, sits within the minor groove in the A-T-T-C region of the DNA double helix, displacing the spine of hydration that is found in drug-free DNA. The NH groups of the benzimidazoles make bridging three-center hydrogen bonds between adenine N-3 and thymine O-2 atoms on the edges of base-pairs, in a manner both mimicking the spine of hydration and calling to mind the binding of the auti-tumor drug netropsin. Two conformers of Hoechst are seen in roughly equal populations, related by 180 degrees rotation about the central benzimidazole-benzimidazole bond: one form in which the piperazine ring extends out from the surface of the double helix, and another in which it is buried deep within the minor groove. Steric clash between the drug and DNA dictates that the phenol-benzimidazole-benzimidazole portion of Hoechst 33258 binds only to A.T regions of DNA, whereas the piperazine ring demands the wider groove characteristic of G.C regions. Hence, the piperazine ring suggests a possible G.C-reading element for synthetic DNA sequence-reading drug analogs.  相似文献   

14.
D J Patel  L Shapiro 《Biochimie》1985,67(7-8):887-915
We have investigated intermolecular interactions and conformational features of the netropsin complexes with d(G1-G2-A3-A4-T5-T6-C7-C8) duplex (AATT 8-mer) and the d(G1-G2-T3-A4-T5-A6-C7-C8) duplex (TATA 8-mer) by one and two-dimensional NMR studies in solution. We have assigned the amide, pyrrole and methylene protons of netropsin and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. The directionality of the observed distance-dependent NOEs demonstrates that the 8-mer helices remain right-handed and that the arrangement of concave and convex face protons of netropsin are retained in the complexes. The observed changes in NOE patterns and chemical shift changes on complex formation suggest small conformational changes in the nucleic acid at the AATT and TATA antibiotic binding sites and possibly the flanking G.C base pairs. We observe intermolecular NOEs between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4.T5 base pairs of the AATT 8-mer and TATA 8-mer duplexes. The concave face pyrrole protons of the antibiotic also exhibit NOEs to the sugar H1' protons of residues 5 and 6 in the AATT and TATA 8-mer complexes. We also detect intermolecular NOEs between the guanidino and propioamidino methylene protons at either end of netropsin and the adenosine H2 proton of the two flanking A3.T6 base pairs in the AATT 8-mer and T3.A6 base pairs in the TATA 8-mer duplexes. These studies establish a set of nine contacts between the concave face of the antibiotic and the minor groove AATT segment and TATA segment of the 8-mer duplexes in solution. The observed magnitude of the NOEs require that there be no intervening water molecules sandwiched between the concave face of the antibiotic and the minor groove of the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation. The observed differences in the netropsin amide proton chemical shifts in the AATT 8-mer and TATA 8-mer complexes suggest differences in the strength and/or type of intermolecular hydrogen bonds at the AATT and TATA binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The sequence of non-contacted bases at the center of the 434 repressor binding site affects the strength of the repressor-DNA complex by influencing the structure and flexibility of DNA (Koudelka, G. B., and Carlson, P. (1992) Nature 355, 89-91). We synthesized 434 repressor binding sites that differ in their central sequence base composition to test the importance of minor groove substituents and/or the number of base pair hydrogen bonds between these base pairs on DNA structure and strength of the repressor-DNA complex. We show here that the number of base pair H-bonds between the central bases apparently has no role in determining the relative affinity of a DNA site for repressor. Instead we find that the affinity of DNA for repressor depends on the absence or presence the N2-NH(2) group on the purine bases at the binding site center. The N2-NH(2) group on bases at the center of the 434 binding site appears to destabilize 434 repressor-DNA complexes by decreasing the intimacy of the specific repressor-DNA contacts, while increasing the reliance on protein contacts to the DNA phosphate backbone. Thus, the presence of an N2-NH(2) group on the purines at the center of a binding site globally alters the precise conformation of the protein-DNA interface.  相似文献   

16.
A Abu-Daya  P M Brown    K R Fox 《Nucleic acids research》1995,23(17):3385-3392
We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand.  相似文献   

17.
The thiazole orange dye TOTO binds to double-stranded DNA (dsDNA) by a sequence selective bis-intercalation. Each chromophore is sandwiched between two base pairs in a (5'-CpT-3'):(5'-ApG-3') site, and the linker spans two base pairs in the minor groove. We have used one- and two-dimensional NMR spectroscopy to examine the dsDNA binding of an analogue of TOTO in which the linker has been modified to contain a bipyridyl group (viologen) that has minor groove binding properties. We have investigated the binding of this analogue, called TOTOBIPY, to three different dsDNA sequences containing a 5'-CTAG-3', a 5'-CTTAG-3', and a 5'-CTATAG-3' sites, respectively, demonstrating that TOTOBIPY prefers to span three base pairs. The many intermolecular NOE connectivities between TOTOBIPY and the d(CGCTTAGCG):d(CGCTAAGCG) oligonucleotide in the complex shows that the bipyridyl-containing linker is positioned in the minor groove and spans three base pairs. Consequently, we have succeeded in designing and synthesizing a ligand that recognizes an extended recognition sequence of dsDNA as the result of a concerted intercalation and minor groove binding mode.  相似文献   

18.
19.
Alkylating agents are generally highly reactive with DNA but demonstrate limited DNA sequence selectivity. In contrast, synthetic pyrrole-imidazole polyamides recognize specific DNA sequences with high affinity but are unable to permanently damage DNA. An eight-ring hairpin polyamide conjugated to the alkylating moiety cyclopropylpyrroloindole, related to the natural product CC-1065, affords a conjugate 1-CBI (polyamide 1-CBI (1-(chloromethyl)-5-hydroxyl-1,2-dihydro-3H-benz[e]indole) conjugate), which binds to specific sequences in the minor groove of DNA and alkylates a single adenine flanking the polyamide binding site. In this study, we show that 1-CBI alkylates DNA in both plasmid and intracellular minichromosomal form and inhibits DNA replication under both cell-free and cellular conditions. In addition, it inhibits cell growth and arrests cells in the G2/M phase of the cell cycle.  相似文献   

20.
Information readout in the DNA minor groove is accompanied by substantial DNA deformations, such as sugar switching between the two conformational domains, B-like C2'-endo and A-like C3'-endo. The effect of sugar puckering on the sequence-dependent protein-DNA interactions has not been studied systematically, however. Here, we analyzed the structural role of A-like nucleotides in 156 protein-DNA complexes solved by X-ray crystallography and NMR. To this end, a new algorithm was developed to distinguish interactions in the minor groove from those in the major groove, and to calculate the solvent-accessible surface areas in each groove separately. Based on this approach, we found a striking difference between the sets of amino acids interacting with B-like and A-like nucleotides in the minor groove. Polar amino acids mostly interact with B-nucleotides, while hydrophobic amino acids interact extensively with A-nucleotides (a hydrophobicity-structure correlation). This tendency is consistent with the larger exposure of hydrophobic surfaces in the case of A-like sugars. Overall, the A-like nucleotides aid in achieving protein-induced fit in two major ways. First, hydrophobic clusters formed by several consecutive A-like sugars interact cooperatively with the non-polar surfaces in proteins. Second, the sugar switching occurs in large kinks promoted by direct protein contact, predominantly at the pyrimidine-purine dimeric steps. The sequence preference for the B-to-A sugar repuckering, observed for pyrimidines, suggests that the described DNA deformations contribute to specificity of the protein-DNA recognition in the minor groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号