首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(ADP-ribose) polymerase-1 (PARP-1) hyper-activation promotes cell death but the signaling events downstream of PARP-1 activation are not fully identified. To gain further information on the implication of PARP-1 activation and PAR synthesis on signaling pathways influencing cell death, we exposed HeLa cells to the DNA alkylating agent N-methyl-N′-methyl-nitro-N-nitrosoguanidine (MNNG). We found that massive PAR synthesis leads to down-regulation of ERK1/2 phosphorylation, Bax translocation to the mitochondria, release of cytochrome c and AIF and subsequently cell death. Inhibition of massive PAR synthesis following MNNG exposure with the PARP inhibitor PJ34 prevented those events leading to cell survival, whereas inhibition of ERK1/2 phosphorylation by inhibiting MEK counteracted the cytoprotective effect of PJ34. Together, our results provide evidence that PARP-1-induced cell death by MNNG exposure in HeLa cells is mediated in part through inhibition of the MEK/ERK signaling pathway and that inhibition of massive PAR synthesis by PJ34, which promotes sustained activation of ERK1/2, leads to cytoprotection.  相似文献   

2.
RAD52 motif-containing 1 (RDM1), a key regulator of DNA double-strand break repair and recombination, has been reported to play an important role in the development of various human cancers, such as papillary thyroid carcinoma, neuroblastoma and lung cancer. However, the effect of RDM1 on osteosarcoma (OS) progression remains unclear. Here, this study mainly explored the connection between RDM1 and OS progression, as well as the underlying mechanism. It was found that RDM1 was highly expressed in OS cells compared with human osteoblast cells. Knockdown of RDM1 caused OS cell proliferation inhibition, cell apoptosis promotion and cell cycle arrest at G1 stage, whereas RDM1 overexpression resulted in the opposite phenotypes. Furthermore, RDM1 silencing leads to a significant decrease in tumour growth in xenograft mouse model. RDM1 also increased the protein levels of MEK 1/2 and ERK 1/2. All these findings suggest that RDM1 plays an oncogenic role in OS via stimulating cell cycle transition from G1 to S stage, and regulating MEK/ERK signalling pathway, providing a promising therapeutic factor for the treatment of OS.  相似文献   

3.
4.
The Raf/MEK/extraceUular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ ERK-mediated growth arrest signaling.  相似文献   

5.
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.  相似文献   

6.
7.
Connective tissue growth factor (CTGF, CCN2) is overexpressed in pancreatic cancer. We mapped the minimal CCN2 promoter active in PANC-1 cells, a human pancreatic cancer cell line. Within this region, Sp1, BCE-1 and Ets elements were important for the activity of the CCN2 promoter. Constitutive hyperactivated ras is a hallmark of cancers, including that of the pancreas. Treatment of PANC-1 cells with the MEK inhibitor U0126 or the Sp1 inhibitor mithramycin reduced CCN2 mRNA and promoter activity. Mutation of the BCE-1, but not Sp1 or Ets, site abolished the responsiveness of the CCN2 promoter to U0126. Overexpressing constitutively active MEK1 or ras activated CCN2 promoter activity. Thus CCN2 is likely to act downstream of ras in PANC-1 cells. CCN2 is overexpressed in cancer cells. Activated ras/MEK/ERK is a hallmark of cancer, and we have shown that the elevated CCN2 expression in pancreatic cancer cells is dependent on this pathway.  相似文献   

8.
9.
Park JI  Strock CJ  Ball DW  Nelkin BD 《Cytokine》2005,29(3):125-134
Interleukin-1beta (IL-1beta) is a pleiotropic cytokine that can induce several cellular signal transduction pathways. Here, we show that IL-1beta can induce cell cycle arrest and differentiation in the human medullary thyroid carcinoma (MTC) cell line, TT. IL-1beta induces cell cycle arrest accompanied by morphological changes and expression of the neuroendocrine marker calcitonin. These changes are blocked by the MEK1/2 specific inhibitor U0126, indicating that MEK1/2 is essential for IL-1beta signaling in TT cells. IL-1beta induces expression of leukemia inhibitory factor (LIF) and activation of STAT3 via the MEK/ERK pathway. This activation of STAT3 could be abrogated by treatment with anti-LIF neutralizing antibody or anti-gp130 blocking antibody, indicating that induction of LIF expression is sufficient and essential for STAT3 activation by IL-1beta. In addition to activation of the LIF/JAK/STAT pathway, IL-1beta also induced an MEK/ERK-mediated intracellular cell-autonomous signaling pathway that is independently sufficient for growth arrest and differentiation. Thus, IL-1beta activates the MEK/ERK pathway to induce growth arrest and differentiation in MTC cells via dual independent signaling mechanisms, the cell-extrinsic LIF/JAK/STAT pathway, and the cell-intrinsic autonomous signaling pathway.  相似文献   

10.
In this study, we showed that plasminogen (Plg) and plasmin (Pla) bind to lysine-binding sites on cell surface and trigger a signaling pathway that activates the mitogen-activated protein kinase (MAPK) MEK and ERK1/2, which in turn leads to the expression of the primary response genes c-fos and early growth response gene egr-1. Our data show that the Plg/Pla-stimulated steady-state mRNA levels of both genes reached a maximum by 30 min and then returned to basal levels by 1h. The gene induction was sensitive to both pharmacological and genetic inhibition of MEK. Leupeptin, a serine protease inhibitor, suppressed Pla but not Plg-induced c-fos and egr-1 expression, emphasizing the role played by the serine protease activity associated with Pla. Pre-incubation with cholera toxin completely blocked the Plg/Pla-induced gene expression, suggesting that another signaling pathway, which recruits G protein-coupled receptors, may also be involved. Furthermore, Plg/Pla also stimulated AP-1 and EGR-1 DNA-binding activities, which were abrogated by pharmacological inhibition of MEK. Altogether, these results suggest that Plg/Pla stimulates c-fos and egr-1 expression via activation of the MEK/ERK pathway.  相似文献   

11.
12.
We previously found that km23‐1/DYNLRB1 is required for transforming growth factor‐β (TGFβ) production through Ras/ERK pathways in TGFβ‐sensitive epithelial cells and in human colorectal cancer (CRC) cells. Here we demonstrate that km23‐1/DYNLRB1 is required for mitogen‐activated protein kinase kinase (MEK) activation in human CRC cells, detected by km23‐1/DYNLRB1‐siRNA inhibition of phospho‐(p)‐MEK immunostaining in RKO cells. Furthermore, we show that CRISPR‐Cas9 knock‐out (KO) of km23‐1/DYNLRB1 reduced cell migration in two additional CRC models, HCT116 and DLD‐1. Of interest, in contrast to our previous work showing that dynein motor activity was required for TGFβ‐mediated nuclear translocation of Smad2, in the current report, we demonstrate for the first time that disruption of dynein motor activity did not reduce TGFβ‐mediated activation of MEK1/2 or c‐Jun N‐terminal kinase (JNK). Moreover, size exclusion chromatography of RKO cell lysates revealed that B‐Raf, extracellular signal‐regulated kinase (ERK), and p‐ERK were not present in the large molecular weight fractions containing dynein holocomplex components. Furthermore, sucrose gradient fractionation of cell lysates from both HCT116 and CBS CRC cells demonstrated that km23‐1/DYNLRB1 co‐sedimented with Ras, p‐ERK, and ERK in fractions that did not contain components of holo‐dynein. Thus, km23‐1/DYNLRB1 may be associated with activated Ras/ERK signaling complexes in cell compartments that do not contain the dynein holoprotein complex, suggesting dynein‐independent km23‐1/DYNLRB1 functions in Ras/ERK signaling. Finally, of the Ras isoforms, R‐Ras is most often associated with cell migration, adhesion, and protrusive activity. Here, we show that a significant fraction of km23‐1/DYNLRB1 and RRas wase co‐localized at the protruding edges of migrating HCT116 cells, suggesting an important role for the km23‐1/DYNLRB1‐R‐Ras complex in CRC invasion.  相似文献   

13.
NBS1 is a member of the Mre11–Rad50–NBS1 complex, which plays a role in cellular responses to DNA damage and the maintenance of genomic stability. Transgenic mice models and clinical symptoms of NBS patients have shown that NBS1 exerts pleiotropic actions on the growth and development of mammals. The present study showed that after repression of endogenous NBS1 levels using short interfering RNA, hTERT-RPE cells demonstrated impaired proliferation and a poor response to IGF-1. NBS1 down-regulated cells displayed disturbances in periodical oscillations of cyclin E and A and delayed cell cycle progression. Remarkably, lower phosphorylation levels of c-Raf and diminished activity of Erk1/2 in response to IGF-1 suggest a link among NBS1, IGF-1 signaling and the Ras/Raf/MEK/ERK cascade. The functional relevance of NBS1 in mitogenic signaling and initiation of cell cycle progression were demonstrated in NBS1 down-regulated cells where IGF-1 had a limited ability to induce the FOS and CCND1 expressions. In conclusion, our findings provide strong evidence that NBS1 has a functional role in IGF-1 signaling for the promotion of cell proliferation via the Ras/Raf/MEK/ERK cascade.  相似文献   

14.
15.
BackgroundOver-exposure to manganese (Mn) causes irreversible movement disorders with signs and symptoms similar, but not identical, to idiopathic Parkinson's disease (IPD). Recent data suggest that Mn toxicity occurs in dopaminergic (DA) neurons, although the mechanism remains elusive. This study was designed to investigate whether Mn interfered the apoptotic signaling transduction cascade in DA neurons.MethodsMouse midbrain dopaminergic MN9D cells were exposed to Mn in a concentration range of 0, 400, 800, or 1200 μM as designated as control, low, medium, and high exposure groups, respectively. The flow cytometry with Annexin V/PI double staining and immunohistochemistry were used to assess the apoptosis.ResultsData indicated that Mn exposure caused morphological alterations typical of apoptosis, increased apoptotic cells by 2–8 fold, and produced reactive oxidative species (ROS) by 1.5–2.2 fold as compared to controls (p < 0.05). Studies by qPCR and Western blot revealed that Mn exposure significantly increased the protein expression of extracellular signal-regulated kinase-5 (ERK5) and mitogen-activated ERK kinase-5 (MEK5) (p < 0.05). The presence of BIX02189, a specific inhibitor of MER/ERK, caused a much greater cytotoxicity, i.e., higher cell death, more ROS production, and worsened apoptosis, than did the treatment with Mn alone. Following Mn exposure, the expression of a downstream effector Bcl- 2 was reduced by 48 % while those of Bax and Caspase-3 were increased by 266.7 % and 90.1 %, respectively, as compared to controls (p < 0.05).ConclusionTaken together, these data provide the initial evidence that the signaling transduction cascade mediated by MEK5/ERK5 is responsible to Mn-induced cytotoxicity; Mn exposure, by suppressing anti-apoptotic function while facilitating pro-apoptotic activities, alters neuronal cell’s survival and functionally inhibits DA production by MN9D cells.  相似文献   

16.
The MEK/ERK pathway is found to be important in regulating different biological processes such as proliferation, differentiation and survival in a wide variety of cells. However, its role in self‐renewal of haematopoietic stem cells is controversial and remains to be clarified. The aim of this study was to understand the role of MEK/ERK pathway in ex vivo expansion of mononuclear cells (MNCs) and purified CD34+ cells, both derived from human umbilical cord blood (hUCB). Based on our results, culturing the cells in the presence of an inhibitor of MEK/ERK pathway—PD0325901 (PD)—significantly reduces the expansion of CD34+ and CD34+ CD38? cells, while there is no change in the expression of stemness‐related genes (HOXB4, BMI1). Moreover, in vivo analysis demonstrates that PD reduces engraftment capacity of ex vivo expanded CD34+ cells. Notably, when ERK pathway is blocked in UCB‐MNCs, spontaneous erythroid differentiation is promoted, found in concomitant with increasing number of burst‐forming unit‐erythroid colony (BFU‐E) as well as enhancement of erythroid glycophorin‐A marker. These results are in total conformity with up‐regulation of some erythroid enhancer genes (TAL1, GATA2, LMO2) and down‐regulation of some erythroid repressor genes (JUN, PU1) as well. Taken together, our results support the idea that MEK/ERK pathway has a critical role in achieving the correct balance between self‐renewal and differentiation of UCB cells. Also, we suggest that inhibition of ERK signalling could likely be a new key for erythroid induction of UCB‐haematopoietic progenitor cells.  相似文献   

17.
18.
19.
To improve the survival and/or differentiation of grafted BMSCs (bone marrow stem cells) represents one of the challenges for the promising cell‐based therapy. Considerable reports have implicated Sal B (salvianolic acid B), a potent aqueous extract of Salvia miltiorrhiza, in enhancing the survival of cells under various conditions. In this study, we investigated the effect of Sal B on H2O2‐induced apoptosis in rat BMSCs, focusing on the survival signalling pathways. Results indicated that the MEK [MAPK (mitogen‐activated protein kinase)/ERK (extracellular‐signal‐regulated kinase) kinase] inhibitor (PD98059) and 10 μM Sal B remarkably prevented BMSCs from H2O2‐induced apoptosis through attenuating caspase‐3 activation, which is accompanied by the significant up‐regulation of Bcl‐2. In addition, the ROS (reactive oxygen species) accumulation was also reduced after Sal B treatment. Furthermore, Sal B inhibited the ERK1/2 phosphorylations stimulated by H2O2. Taken together, our results showed that H2O2‐induced apoptosis in BMSCs via the ROS/MEK/ERK1/2 pathway and Sal B may exert its cytoprotection through mediating the pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号