首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Relative Stability of Membrane Proteins in Escherichia coli   总被引:2,自引:2,他引:0       下载免费PDF全文
The relative stability of membrane proteins in Escherichia coli was investigated to determine whether these proteins are degraded at heterogeneous rates and, if so, whether the degradative rates are correlated with the sizes or charges of the proteins. Cells growing in a glucose-limited chemostat with a generation time of 15 h were labeled with [14C]leucine. After allowing 24 h for turnover of 14C-labeled proteins, the cells were labeled for 15 min with [3H]leucine. By this protocol, the rapidly degraded proteins have a high ratio of 3H to 14C, whereas the stable proteins have a lower ratio. The total cell envelope fraction was collected by differential centrifugation, and the proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The relative ratio for each protein was determined by dividing its 3H/14C ratio by the 3H/14C ratio of the total membrane fraction. Although most of the 125 membrane proteins had relative ratios close to the average for the total membrane fraction, 19 varied significantly from this value. These differences were also observed when the order of addition of [14C]leucine and [3H]leucine was reversed. In control cultures labeled simultaneously with both isotopes, the relative ratios of these 19 proteins were similar to that of the total membrane fraction. Thirteen of these proteins had low relative ratios, which suggested that they were more stable than the average protein. An experiment in which the normal labeling procedure was followed by a 60-min chase period in the presence of excess unlabeled leucine suggested that the low relative ratios of 3 of these 13 proteins may be due to a slow post-translational modification step. Six membrane proteins had high relative ratios, which indicated that they were degraded rapidly. In contrast to the relationships found for soluble proteins in mammalian cells, there were no strong correlations between the degradative rates and either the isoelectric points or the molecular weights of membrane proteins in E. coli.  相似文献   

2.
Activated forms of Bacillus thuringiensis insecticidal toxins have consistently been found to form insoluble and inactive precipitates when they are expressed in Escherichia coli. Genetic engineering of these proteins to improve their effectiveness as biological pesticides would be greatly facilitated by the ability to express them in E. coli, since the molecular biology tools available for Bacillus are limited. To this end, we show that activated B. thuringiensis toxin (Cry1Ac) can be expressed in E. coli as a translational fusion with the minor phage coat protein of filamentous phage. Phage particles displaying this fusion protein were viable, infectious, and as lethal as pure toxin on a molar basis when the phage particles were fed to insects susceptible to native Cry1Ac. Enzyme-linked immunosorbent assay and Western blot analysis showed the fusion protein to be antigenically equivalent to native toxin, and micropanning with anti-Cry1Ac antibody was positive for the toxin-expressing phage. Phage display of B. thuringiensis toxins has many advantages over previous expression systems for these proteins and should make it possible to construct large libraries of toxin variants for screening or biopanning.  相似文献   

3.
A number of bacteria, algae, and higher plant chloroplasts were examined to determine the nature of their biotin-protein complexes. In all tissues studied, the major fraction of the total biotin was bound to protein(s) through a lysine bridge and these proteins accepted 14CO2 to form carboxybiotinyl protein(s). The biotinyl protein was present in the soluble protein fraction in the procaryotic organisms, Escherichia coli and Rhodospirillum rubrum. In eucaryotic organisms, such as Chlamydomonas reinhardi and chloroplasts from higher plants, biotinyl protein was associated with chloroplast membranes. The blue-green alga, Anacystis nidulans, showed an intermediate condition, while the filamentous blue-green alga, Anabaena flos-aquae, resembled the higher plant chloroplasts. Although on a chlorophyll basis, stroma lamellae fractions enriched in Photosystem I had a higher biotin protein content than did the grana lamellae fractions, on a protein basis, the biotinyl protein content was rather evenly distributed between the different membrane systems. In dormant embryos of barley and wheat acetyl CoA carboxylase was a soluble protein localized in the proplastids. During germination the biotin protein(s) became associated with the lamellar membrane fraction.  相似文献   

4.
Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL–ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL–GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL–ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL–ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli.  相似文献   

5.
Enteropathogenic Escherichia coli utilise a filamentous type III secretion system to translocate effector proteins into host gut epithelial cells. The primary constituent of the extracellular component of the filamentous type III secretion system is EspA. This forms a long flexible helical conduit between the bacterium and host and has a structure almost identical to that of the flagella filament. We have inserted the D3 domain of FliCi (from Salmonella typhimurium) into the outer domain of EspA and have studied the structure and function of modified filaments when expressed in an enteropathogenic E. coli espA mutant. We found that the chimeric protein EspA-FliCi filaments were biologically active as they supported protein secretion and translocation [assessed by their ability to trigger actin polymerisation beneath adherent bacteria (fluorescent actin staining test)]. The expressed filaments were recognised by both EspA and FliCi antisera. Visualisation and analysis of the chimeric filaments by electron microscopy after negative staining showed that, remarkably, EspA filaments are able to tolerate a large protein insertion without a significant effect on their helical architecture.  相似文献   

6.
The interaction of ribosomal subunits from Escherichia coli has been studied using crosslinking reagents. Radioactive 35S-labeled 50 S subunits and non-radioactive 30 S subunits were allowed to reassociate to form 70 S ribosomes. The 70 S particles, containing radioactivity only in the 50 S protein moiety, were incubated with glutaraldehyde or formaldehyde. As a result of this treatment a substantial fraction of the 70 S particles did not dissociate at 1 mm-Mg2+. This fraction was isolated and the ribosomal proteins were extracted. The protein mixture was analyzed by the Ouchterlony double diffusion technique by using eighteen antisera prepared against single 30 S ribosomal proteins (all except those against S3, S15 and S17). As a result of the crosslinking procedure it was found that only anti-S16 co-precipitated 35S-labeled 50 S protein. It is concluded that the 30 S protein S16 is at or near the site of interaction between subunits and can become crosslinked to one or more 50 S ribosomal proteins.  相似文献   

7.
The oil-degrading microorganism Acinetobacter venetianus RAG-1 produces an extracellular polyanionic, heteropolysaccharide bioemulsifier termed emulsan. Emulsan forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. Removal of the protein fraction yields a product, apoemulsan, which exhibits much lower emulsifying activity on hydrophobic substrates such as n-hexadecane. One of the key proteins associated with the emulsan complex is a cell surface esterase. The esterase (molecular mass, 34.5 kDa) was cloned and overexpressed in Escherichia coli BL21(DE3) behind the phage T7 promoter with the His tag system. After overexpression, about 80 to 90% of the protein was found in inclusion bodies. The overexpressed esterase was recovered from the inclusion bodies by solubilization with deoxycholate and, after slow dialysis, was purified by metal chelation affinity chromatography. Mixtures containing apoemulsan and either the catalytically active soluble form of the recombinant esterase isolated from cell extracts or the solubilized inactive form of the enzyme recovered from the inclusion bodies formed stable oil-water emulsions with very hydrophobic substrates such as hexadecane under conditions in which emulsan itself was ineffective. Similarly, a series of esterase-defective mutants were generated by site-directed mutagenesis, cloned, and overexpressed in E. coli. Mutant proteins defective in catalytic activity as well as others apparently affected in protein conformation were also active in enhancing the apoemulsan-mediated emulsifying activity. Other proteins, including a His-tagged overexpressed esterase from the related organism Acinetobacter calcoaceticus BD4, showed no enhancement.  相似文献   

8.
We previously showed that over production of a fusion protein in which the prion domain of Saccharomyces cerevisiae [PSI+] is connected to glutathione S-transferase (GST-Sup35NM) causes a marked decrease in the colony forming ability of Escherichia coli strain BL21 after reaching stationary phase. Evidence indicated that the observed toxicity was attributable to intracellular formation of fibrous aggregates of GST-Sup35NM. In this report, we describe the isolation of plasmids that encode mutant forms of GST-Sup35NM which do not confer the toxicity to E. coli strain BL21. Each of the four spontaneous mutant-forms of GST-Sup35NM obtained revealed amino acid substitutions. One substitution was located in the N domain, and the others in the M domain. Congo red binding assay indicated that none of these mutant proteins underwent conformational alteration in vitro. From these results, we conclude that the M domain, in collaboration with the N domain, plays an essential role in aggregation of Sup35NM. In addition, our data demonstrate the usefulness of the E. coli expression system in studying aggregate-forming proteins.Key words: [PSI+], yeast prion, protein aggregation, mutant selection, predication of protein secondary structure  相似文献   

9.
We describe a novel membrane surface display system that allows the anchoring of foreign proteins in the cytoplasmic membrane (CM) of stable, cell wall-less L-form cells of Escherichia coli and Proteus mirabilis. The reporter protein, staphylokinase (Sak), was fused to transmembrane domains of integral membrane proteins from E. coli (lactose permease LacY, preprotein translocase SecY) and P. mirabilis (curved cell morphology protein CcmA). Both L-form strains overexpressed fusion proteins in amounts of 1 to 100 μg ml−1, with higher expression for those with homologous anchor motifs. Various experimental approaches, e.g., cell fractionation, Percoll gradient purification, and solubilization of the CM, demonstrated that the fusion proteins are tightly bound to the CM and do not form aggregates. Trypsin digestion, as well as electron microscopy of immunogold-labeled replicas, confirmed that the protein was localized on the outside surface. The displayed Sak showed functional activity, indicating correct folding. This membrane surface display system features endotoxin-poor organisms and can provide a novel platform for numerous applications.  相似文献   

10.
The ompA gene of Escherichia coli codes for a major protein of the outer membrane. When this gene was moved between various unrelated strains (E. coli K-12 and two clinical isolates of E. coli) by transduction, the gene was expressed very poorly. Recombinants carrying “foreign” genes produced no OmpA protein which could be detected on polyacrylamide gels and became resistant to bacteriophage K3, which uses this protein as receptor. The recombinants were sensitive to host-range mutants of K3, indicating a very low level of OmpA protein was produced. When an E. coli K-12 recombinant carrying an unexpressed foreign ompA allele was subjected to two cycles of selection for an OmpA+ phenotype, a mutant strain was obtained which was sensitive to K3 and which expressed nearly normal levels of OmpA protein in the outer membrane. This strain carried mutations in the foreign ompA gene, as indicated both by genetic mapping and the alteration of a peptide in the mutant OmpA protein. The ability of the OmpA protein to bind to lipopolysaccharide (LPS) showed similar strain specificity, and the mutant OmpA protein which was expressed in an unrelated host showed enhanced ability to bind LPS from its new host. Thus, cell surface expression of the ompA gene appears to depend upon the ability of the gene product to bind LPS, suggesting that an interaction between the protein and LPS plays an essential role in biosynthesis of this outer membrane protein.  相似文献   

11.
A class of Escherichia coli mutants called tolG are specifically tolerant to bacteriocin JF246. Cell envelopes were prepared from three independent spontaneous E. coli. tolG mutants and the parental strain (tolG+). Electrophoresis of these preparations in polyacrylamide gels containing sodium dodecyl sulfate showed that the tolG strains lacked a cell envelope protein found in the tolG+ strain. It was estimated that this protein accounted for 10% of the total cell envelope proteins by densitometer tracings of gels stained with Fast Green. Membrane fractionation by isopycnic centrifugation in a sucrose density gradient showed that this protein was located in the outer membrane of tolG+ cells. Genetic studies using conjugation, transduction and reversion showed that, in the limited number of recombinants or revertants studied, strains exhibiting the tolerant phenotype lacked the outer membrane protein, whereas the protein was present in bacteriocin-sensitive strains.  相似文献   

12.
YhdE, a Maf-like protein in Escherichia coli, exhibits nucleotide pyrophosphatase (PPase) activity, yet its cellular function remains unknown. Here, we characterized the PPase activity of YhdE on dTTP, UTP and TTP and determined two crystal structures of YhdE, revealing ‘closed’ and ‘open’ conformations of an adaptive active site. Our functional studies demonstrated that YhdE retards cell growth by prolonging the lag and log phases, particularly under stress conditions. Morphology studies showed that yhdE-knockout cells transformed the normal rod shape of wild-type cells to a more spherical form, and the cell wall appeared to become more flexible. In contrast, YhdE overexpression resulted in filamentous cells. This study reveals the previously unknown involvement of YhdE in cell growth inhibition under stress conditions, cell-division arrest and cell-shape maintenance, highlighting YhdE’s important role in E. coli cell-cycle checkpoints.  相似文献   

13.
Activity of Mg2+-dependent ATPase from the fraction of cell-free homogenate sedimenting at 35 000×g was studied during the growth and division ofEscherichia coli B. It decreased with the transition to stationary growth phase and after a specific inhibition of cell division. During the reversion of the division of filamentous forms the activity sharply increased; with the end of the reversion it dropped again to the level prior to the inhibition. The possible connection of the activity of Mg2+-dependent ATPase with the cell division ofEscherichia coli B is discussed.  相似文献   

14.
We studied morphologic changes after sublethal high hydrostatic pressure treatment (HPT) of Escherichia coli K-12 strains in which genes related to the cytoskeleton, cell wall, and cell division had been deleted. Some long filamentous and swelling cells were observed in wild-type bacteria, while some spherical, branched, or collapsed cells were observed in deletion mutants. In particular, ΔzapA and ΔrodZ showed distinguished morphologies. ZapA supports FtsZ, a cytoskeletal protein, forming ring with ZapB. RodZ, a cytoskeletal protein, interacts with MreB, also a cytoskeletal protein, and both factors are necessary for maintaining the rod shape of the cell. These results showed that insufficient formation of FtsZ rings induced cell elongation and that insufficient formation of MreB induced a branched and collapsed cell shape. Therefore, the correct formation of the bacteria cytoskeleton by FtsZ rings and MreB is important for keeping normal cell shape during growth after HPT, and the polymerization of cytoskeletal proteins was a critical target of sublethal HPT. These results indicate that sublethal HPT induces bacterial cell morphologic change and provide important information on the role of genes involved in morphogenesis. Therefore, sublethal HPT may be a good tool for studying the morphogenesis of bacterial cells.  相似文献   

15.
Escherichia coli can selectively degrade proteins with abnormal structures1–4. Certain mutant proteins are rapidly catabolized even though the normal gene products are stable3–5. Similarly, the incorporation of various amino-acid analogues or puromycin1,2 into cell proteins or frequent errors in translation2 lead to the rapid degradation of the resulting abnormal proteins. This degradation appears to involve a proteolytic mechanism distinct from that activated during starvation to provide starving cells with a source of amino-acids for protein synthesis6,7.  相似文献   

16.
Secretion of Cryparin, a Fungal Hydrophobin   总被引:1,自引:0,他引:1       下载免费PDF全文
Cryparin is a cell-surface-associated hydrophobin of the filamentous ascomycete Cryphonectria parasitica. This protein contains a signal peptide that directs it to the vesicle-mediated secretory pathway. We detected a glycosylated form of cryparin in a secretory vesicle fraction, but secreted forms of this protein are not glycosylated. This glycosylation occurred in the proprotein region, which is cleaved during maturation by a Kex2-like serine protease, leaving a mature form of cryparin that could be isolated from both the cell wall and culture medium. Pulse-chase labeling experiments showed that cryparin was secreted through the cell wall, without being bound, into the culture medium. The secreted protein then binds to the cell walls of C. parasitica, where it remains. Binding of cryparin to the cell wall occurred in submerged culture, presumably because of the lectin-like properties unique to this hydrophobin. Thus, the binding of this hydrophobin to the cell wall is different from that of other hydrophobins which are reported to require a hydrophobic-hydrophilic interface for assembly.  相似文献   

17.
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.  相似文献   

18.
In Escherichia coli, cell division is performed by a multimolecular machinery called the divisome, made of 10 essential proteins and more than 20 accessory proteins. Through a bacterial two-hybrid library screen, we identified the E. coli β-lactam resistance protein Blr, a short membrane polypeptide of 41 residues, as an interacting partner of the essential cell division protein FtsL. In addition to FtsL, Blr was found to associate with several other divisomal proteins, including FtsI, FtsK, FtsN, FtsQ, FtsW, and YmgF. Using fluorescently tagged Blr, we showed that this peptide localizes to the division septum and that its colocalization requires the presence of the late division protein FtsN. Although Blr is not essential, previous studies have shown that the inactivation of the blr gene increased the sensitivity of bacteria to β-lactam antibiotics or their resistance to cell envelope stress. Here, we found that Blr, when overproduced, restores the viability of E. coli ftsQ1(Ts) cells, carrying a thermosensitive allele of the ftsQ gene, during growth under low-osmotic-strength conditions (e.g., in synthetic media or in Luria-Bertani broth without NaCl). In contrast, the inactivation of blr increases the osmosensitivity of ftsQ1(Ts) cells, and blr ftsQ1 double mutants exhibit filamentous growth in LB broth even at a moderate salt concentration (0.5% NaCl) compared to parental ftsQ1(Ts) cells. Altogether, our results suggest that the small membrane polypeptide Blr is a novel component of the E. coli cell division apparatus involved in the stabilization of the divisome under certain stress conditions.  相似文献   

19.
We have improved the incorporation of l- and d-forms of unnatural amino acid (UAA) Nε-thiaprolyl-l-lysine (ThzK) into ubiquitin (UB) and green fluorescent protein (GFP) by 2–6 folds with the use of the methylester forms of the UAAs in E coli cell culture. We also improved the yields of UAA-incorporated UB and GFP with the methylester forms of Nε-Boc-l-Lysine (BocK) and Nε-propargyl-l-Lysine (PrK) by 2–5 folds compared to their free acid forms. Our work demonstrated that using methylester-capped UAAs for protein expression is a useful strategy to enhance the yields of UAA-incorporated proteins.  相似文献   

20.
Yeast (CUP1) and mammalian (HMT-1A) metallothioneins (MTs) have been efficiently expressed in Escherichia coli as fusions to the outer membrane protein LamB. A 65-amino-acid sequence from the CUP1 protein of Saccharomyces cerevisiae (yeast [Y] MT) was genetically inserted in permissive site 153 of the LamB sequence, which faces the outer medium. A second LamB fusion at position 153 was created with 66 amino acids recruited from the form of human (H) MT that is predominant in the adipose tissue, HMT-1A. Both LamB153-YMT and LamB153-HMT hybrids were produced in vivo as full-length proteins, without any indication of instability or proteolytic degradation. Each of the two fusion proteins was functional as the port of entry of lambda phage variants, suggesting maintenance of the overall topology of the wild-type LamB. Expression of the hybrid proteins in vivo multiplied the natural ability of E. coli cells to bind Cd2+ 15- to 20-fold, in good correlation with the number of metal-binding centers contributed by the MT moiety of the fusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号