首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of the Escherichia coli elongation factor Tu guanosine tetraphosphate complex (EF-Tu ppGpp) with aminoacyl-tRNAs(aa-tRNA) was reinvestigated by gel filtration and hydrolysis protection experiments. These experiments show that EF-Tu X ppGpp like EF-Tu X GDP (Pingoud, A., Block, W., Wittinghofer, A., Wolf, H. & Fischer, E. (1982) J. Biol. Chem. 257, 11261-11267) forms a fairly stable complex with Phe-tRNAPhe, KAss being 0.6 X 10(5) M-1 at 25 degrees C. The binding of the EF-Tu X ppGpp X aa-tRNA complex to programmed ribosomes was investigated by a centrifugation technique. It is shown that this complex is bound codon-specific with KAss = 3 X 10(7) M-1 at 0 degrees C and that it stimulates peptidyl transfer. A numerical estimation of the intracellular concentration of EF-Tu X GTP X aa-tRNA and EF-Tu X ppGpp X aa-tRNA during normal growth and under the stringent response indicates that ppGpp accumulation does affect the EF-Tu X GTP X aa-tRNA concentration but does not lead to major depletion of this pool. Furthermore, due to the higher affinity of EF-Tu X GTP to aa-tRNA and of the ternary complex EF-Tu X GTP X aa-tRNA to the ribosome, EF-Tu X ppGpp X aa-tRNA binding to the ribosome is not significant. According to our measurements and calculations, therefore, a direct participation of EF-Tu in slowing down the rate of protein biosynthesis and improving its accuracy during amino acid starvation is not obvious.  相似文献   

2.
3.
The unusual nucleotide guanosine tetraphosphate, ppGpp, which appears following amino acid starvation in “stringent” strains of bacteria binds to the elongation factor EFTu with a dissociation constant of about 8 × 10?9m. ppGpp binds competitively with GDP and GTP, and EFTs catalyzes the exchange reaction of ppGpp with EFTu · GDP. ppGpp binds to EFTu about 50 times more tightly than does GTP, and, in the absence of elongation factor EFTs, it will effectively inhibit the formation of the ternary complex Phe-tRNA · EFTu · GTP. However, in the presence of EFTs there is rapid equilibration between EFTu · GTP and EFTu · ppGpp which allows EFTu to be rapidly and extensively incorporated into the stable ternary complex. A preliminary estimate of the constant for the dissociation of Phe-tRNA from the ternary complex is 10?810?9m. ppGpp inhibits the enzymatic binding of Phe-tRNA to ribosomes; however, EFTs reverses this inhibition. ppGpp moderately inhibits phenylalanine polymerization even in the presence of EFTs. This inhibition probably involves an interaction of ppGpp with elongation factor G, the translocation factor. It appears that in the intact cell ppGpp would not be an effective inhibitor of EFTu, and that little EFTu · ppGpp can exist in the cell.  相似文献   

4.
Primase is an essential component of the DNA replication machinery, responsible for synthesizing RNA primers that initiate leading and lagging strand DNA synthesis. Bacterial primase activity can be regulated by the starvation-inducible nucleotide (p)ppGpp. This regulation contributes to a timely inhibition of DNA replication upon amino acid starvation in the Gram-positive bacterium Bacillus subtilis. Here, we characterize the effect of (p)ppGpp on B. subtilis DnaG primase activity in vitro. Using a single-nucleotide resolution primase assay, we dissected the effect of ppGpp on the initiation, extension, and fidelity of B. subtilis primase. We found that ppGpp has a mild effect on initiation, but strongly inhibits primer extension and reduces primase processivity, promoting termination of primer extension. High (p)ppGpp concentration, together with low GTP concentration, additively inhibit primase activity. This explains the strong inhibition of replication elongation during starvation which induces high levels of (p)ppGpp and depletion of GTP in B. subtilis. Finally, we found that lowering GTP concentration results in mismatches in primer base pairing that allow priming readthrough, and that ppGpp reduces readthrough to protect priming fidelity. These results highlight the importance of (p)ppGpp in protecting replisome integrity and genome stability in fluctuating nucleotide concentrations upon onset of environmental stress.  相似文献   

5.
6.
Bacterial cells sense external nutrient availability to regulate macromolecular synthesis and consequently their growth. In the Gram-positive bacterium Bacillus subtilis, the starvation-inducible nucleotide (p)ppGpp negatively regulates GTP levels, both to resist nutritional stress and to maintain GTP homeostasis during growth. Here, we quantitatively investigated the relationship between GTP level, survival of amino acid starvation, and growth rate when GTP synthesis is uncoupled from its major homeostatic regulator, (p)ppGpp. We analyzed growth and nucleotide levels in cells that lack (p)ppGpp and found that their survival of treatment with a nonfunctional amino acid analog negatively correlates with both growth rate and GTP level. Manipulation of GTP levels modulates the exponential growth rate of these cells in a positive dose-dependent manner, such that increasing the GTP level increases growth rate. However, accumulation of GTP levels above a threshold inhibits growth, suggesting a toxic effect. Strikingly, adenine counteracts GTP stress by preventing GTP accumulation in cells lacking (p)ppGpp. Our results emphasize the importance of maintaining appropriate levels of GTP to maximize growth: cells can survive amino acid starvation by decreasing GTP level, which comes at a cost to growth, while (p)ppGpp enables rapid adjustment to nutritional stress by adjusting GTP level, thus maximizing fitness.  相似文献   

7.
Guanosine tetra-phosphate (ppGpp), also known as "magic spot I", is a key molecule in the stringent control of most eubacteria and some eukarya. Here, we show that ppGpp affects the functional and molecular properties of the archaeal elongation factor 1α from Sulfolobus solfataricus (SsEF-1α). Indeed, ppGpp inhibited archaeal protein synthesis in vitro, even though the concentration required to get inhibition was higher than that required for the eubacterial and eukaryal systems. Regarding the partial reactions catalysed by SsEF-1α the effect produced by ppGpp on the affinity for aa-tRNA was lower than that measured in the presence of GTP but higher than that for GDP. Magic spot I was also able to bind SsEF-1α with an intermediate affinity in comparison to that displayed by GDP and GTP. Furthermore, ppGpp inhibited the intrinsic GTPase of SsEF-1α with a competitive behaviour. Finally, the binding of ppGpp to SsEF-1α rendered the elongation factor more resistant to heat treatment and the analysis of the molecular model of the complex between SsEF-1α and ppGpp suggests that this stabilisation arises from the charge optimisation on the surface of the protein.  相似文献   

8.
In addition to their natural substrates GDP and GTP, the bacterial translational GTPases initiation factor (IF) 2 and elongation factor G (EF-G) interact with the alarmone molecule guanosine tetraphosphate (ppGpp), which leads to GTPase inhibition. We have used isothermal titration calorimetry to determine the affinities of ppGpp for IF2 and EF-G at a temperature interval of 5-25 °C. We find that ppGpp has a higher affinity for IF2 than for EF-G (1.7-2.8 μM Kdversus 9.1-13.9 μM Kd at 10-25 °C), suggesting that during stringent response in vivo, IF2 is more responsive to ppGpp than to EF-G. We investigated the effects of ppGpp, GDP, and GTP on IF2 interactions with fMet-tRNAfMet demonstrating that IF2 binds to initiator tRNA with submicromolar Kd and that affinity is altered by the G nucleotides only slightly. This—in conjunction with earlier reports on IF2 interactions with fMet-tRNAfMet in the context of the 30S initiation complex, where ppGpp was suggested to strongly inhibit fMet-tRNAfMet binding and GTP was suggested to strongly promote fMet-tRNAfMet binding—sheds new light on the mechanisms of the G-nucleotide-regulated fMet-tRNAfMet selection.  相似文献   

9.
From microbial differentiation to ribosome engineering   总被引:6,自引:0,他引:6  
  相似文献   

10.
11.
The penicillin tolerance exhibited by amino acid-deprived Escherichia coli has been previously proposed to be a consequence of the stringent response. Evidence indicating that penicillin tolerance is directly attributable to guanosine 3',5'-bispyrophosphate (ppGpp) overproduction and not to some other effect of amino acid deprivation is now presented. Accumulation of ppGpp in the absence of amino acid deprivation was achieved by the controlled overexpression of the cloned relA gene, which encodes ppGpp synthetase I. The overproduction of ppGpp resulted in the inhibition of both peptidoglycan and phospholipid synthesis and in penicillin tolerance. The minimum concentration of ppGpp required to establish these phenomena was determined to be 870 pmol per mg (dry weight) of cells. This represented about 70% of the maximum level of ppGpp accumulated during the stringent response. Penicillin tolerance and the inhibition of peptidoglycan synthesis were both suppressed when ppGpp accumulation was prevented by treatment with chloramphenicol, an inhibitor of ppGpp synthetase I activation. Glycerol-3-phosphate acyltransferase, the product of plsB, was recently identified as the main site of ppGpp inhibition in phospholipid synthesis (R. J. Health, S. Jackowski, and C. O. Rock, J. Biol. Chem. 269:26584-26590, 1994). The overexpression of the cloned plsB gene reversed the penicillin tolerance conferred by ppGpp accumulation. This result supports previous observations indicating that the membrane-associated events in peptidoglycan metabolism were dependent on ongoing phospholipid synthesis. Interestingly, treatment with beta-lactam antibiotics by itself induced ppGpp accumulation, but the maximum levels attained were insufficient to confer penicillin tolerance.  相似文献   

12.
Summary The inhibition of elongation factors G, Tu and Ts by ppGpp was studied in vitro in a translation system with missense frequency and elongation rate similar to those in vivo. ppGpp inhibits EF-G with KI=6x10-5 M. When ppGpp is in twofold excess over GTP and EF-G is the rate-limiting component, the elongation rate is reduced two-fold by ppGpp. EF-Tu is inhibited with KI=7x10-7 M in the absence of EF-Ts. When EF-Ts is added, the binding of ppGpp to EF-Tu becomes successively weaker. 1/KI depends linearly on 1/[Ts] and the intercept at the abscissa gives KI=4x10-5 M. This reflects the binding of ppGpp to the binary TuTs complex. The slope reveals that the binding of EF-Ts to the TuMS binary complex is strong (10-6 M). ppGpp may thus inhibit the cycling of EF-Tu indirectly by the removal of the free EF-Ts by its adsorption to TuMS, as well as directly by simple binding to Tu. EF-Tu inhibition by ppGpp can be fully reversed by high levels of aminoacyl-tRNA only in the presence of EF-Ts and at low ribosomal activity. Our in vitro observations have been extrapolated to in vivo conditions with conclusions as follows: Under strong amino acid starvation ppGpp in two-fold excess over GTP cannot reduce significantly the elongation rate of ribosomes and thereby restore the errors to their normal levels as in the stringent response. Under weak starvation, in contrast, a significant rate reduction can be achieved by the trapping of EF-Ts in complex with TuppGpp.  相似文献   

13.
14.
With the beginning of the idiophase the highly phosphorylated guanylic nucleotides guanosine 5′‐diphosphate 3′‐diphosphate (ppGpp) and guanosine 5′‐triphosphate 3′‐diphosphate (pppGpp), collectively referred to as (p)ppGpp, activate stress survival adaptation programmes and trigger secondary metabolism in actinomycetes. The major target of (p)ppGpp is the RNA polymerase, where it binds altering the enzyme activity. In this study analysis of the polynucleotide phosphorylase (PNPase)‐encoding gene pnp mRNA, in Nonomuraea sp. ATCC 39727 wild‐type, constitutively stringent and relaxed strains, led us to hypothesize that in actinomycetes (p)ppGpp may modulate gene expression at the level of RNA decay also. This hypothesis was supported by: (i) in vitro evidence that ppGpp, at physiological levels, inhibited both polynucleotide polymerase and phosphorolytic activities of PNPase in Nonomuraea sp., but not in Escherichia coli, (ii) in vivo data showing that the pnp mRNA and the A40926 antibiotic cluster‐specific dpgA mRNA were stabilized during the idiophase in the wild‐type strain but not in a relaxed mutant and (iii) measurement of chemical decay of pulse‐labelled bulk mRNA. The results of biochemical tests suggest competitive inhibition of ppGpp with respect to nucleoside diphosphates in polynucleotide polymerase assays and mixed inhibition with respect to inorganic phosphate when the RNA phosphorolytic activity was determined.  相似文献   

15.
The levels of transfer ribonucleic acids (tRNAs) specific for 14 amino acids were almost identical in dormant spores and in spores germinated from 6 to 75 min. Germinated spore tRNAs specific for all amino acids tested were between 63 and 93% charged, and there was no significant change in this value from 6 to 75 min of germination. In contrast, tRNAs isolated from dormant spores specific for nine different amino acids were almost completely(>93%) uncharged. However, some dormant spore tRNAs, i.e., those for arginine, histidine, isoleucine, and valine, showed significant (21 to 72%) levels of aminoacylation. Dormant spores contained no detectable guanosine penta- (pppGpp), tetra- (ppGpp), or triphosphate (GTP). However, these nucleotides appeared in the first minutes of germination, and thereafter all increased in parallel with a ratio of pppGpp plus ppGpp to GTP of 0.07 to 0.11, which is characteristic of unstarved vegetative cells.  相似文献   

16.
The 739-codon rel(Seq) gene of Streptococcus equisimilis H46A is bifunctional, encoding a strong guanosine 3',5'-bis(diphosphate) 3'-pyrophosphohydrolase (ppGppase) and a weaker ribosome-independent ATP:GTP 3'-pyrophosphoryltransferase [(p)ppGpp synthetase]. To analyze the function of this gene, (p)ppGpp accumulation patterns as well as protein and RNA synthesis were compared during amino acid deprivation and glucose exhaustion between the wild type and an insertion mutant carrying a rel(Seq) gene disrupted at codon 216. We found that under normal conditions, both strains contained basal levels of (p)ppGpp. Amino acid deprivation imposed by pseudomonic acid or isoleucine hydroxamate triggered a rel(Seq)-dependent stringent response characterized by rapid (p)ppGpp accumulation at the expense of GTP and abrupt cessation of net RNA accumulation in the wild type but not in the mutant. Tetracycline added to block (p)ppGpp synthesis caused the accumulated (p)ppGpp to degrade rapidly, with a concomitant increase of the GTP pool (decay constant of ppGpp, approximately 0.7 min(-1)). Simultaneous addition of pseudomonic acid and tetracycline to mimic a relaxed response caused wild-type RNA synthesis to proceed at rates approximating those seen under either condition in the mutant. Glucose exhaustion provoked the (p)ppGpp accumulation response in both the wild type and the rel(Seq) insertion mutant, consistent with the block of net RNA accumulation in both strains. Although the source of (p)ppGpp synthesis during glucose exhaustion remains to be determined, these findings reinforce the idea entertained previously that rel(Seq) fulfils functions that reside separately in the paralogous reL4 and spoT genes of Escherichia coli. Analysis of (p)ppGpp accumulation patterns was complicated by finding an unknown phosphorylated compound that comigrated with ppGpp under two standard thin-layer chromatography conditions. Unlike ppGpp, this compound did not adsorb to charcoal and did not accumulate appreciably during isoleucine deprivation. Like ppGpp, the unknown compound did accumulate during energy source starvation.  相似文献   

17.
K Ochi 《Journal of bacteriology》1987,169(8):3608-3616
I investigated the significance of the intracellular accumulation of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and of the coordinated decrease in the GTP pool for initiating morphological and physiological differentiation of Streptomyces griseus, a streptomycin-producing strain. In solid cultures, aerial mycelium formation was severely suppressed by the presence of excess nutrients. However, decoyinine, a specific inhibitor of GMP synthetase, enabled the cells to develop aerial mycelia in the suppressed cultures at concentrations which only partially inhibited growth. A factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone) added exogenously had no such effect. Decoyinine was also effective in initiating the formation of submerged spores in liquid culture. The ability to produce streptomycin did not increase but decreased drastically on the addition of decoyinine. This sharp decrease in streptomycin production was accompanied by a decrease in intracellular accumulation of ppGpp. A relaxed (rel) mutant was found among 25 thiopeptin-resistant isolates which developed spontaneously. The rel mutant had a severely reduced ability to accumulate ppGpp during a nutritional shift-down and also during postexponential growth and showed a less extensive decrease in the GTP pool than that in the rel+ parental strain. The rel mutant failed to induce the enzymes amidinotransferase and streptomycin kinase, which are essential for the biosynthesis of streptomycin. The abilities to form aerial mycelia and submerged spores were still retained, but the amounts were less, and for both the onset of development was markedly delayed. The decreased ability to produced submerged spores was largely restored by the addition of decoyinine. This was accompanied by an extensive GTP pool decrease. The rel mutant produced A factor normally, indicating that synthesis of A factor is controlled neither by ppGpp nor by GTP. Conversely, a mutant defective in A-factor synthesis accumulated as much ppGpp as did the parental strain. It was concluded that morphological differentiation of S. griseus results from a decrease in the pool of GTP, whereas physiological differentiation results from a more direct function of the rel gene product (ppGpp). It is also suggested that A factor may render the cell sensitive to receive and respond to the specified signal molecules, presumably ppGpp (for physiological differentiation) or GTP (for morphological differentiation).  相似文献   

18.
The effect of nitrate deprivation on cell growth and nucleotide level was studied in Anacystis nidulans. A 10-fold reduction in nitrate level resulted in a drastic slowdown of growth. Upon addition of nitrate to the starving cultures, after a lag period, the cells resumed growth.Nutritional shift-down induced a transitory expansion of the guanosine tetraphosphate (ppGpp) pool, preceeded by a transitory increase in GTP and ATP concentrations. After having reached peak values, the concentration of ppGpp, GTP and ATP dropped to the respective base levels. The expansion of the ppGpp pool was found to be due to an increase in ppGpp synthesis, rather than to a decrease in ppGpp breakdown. After nutritional shift-up, no decrease in the ppGpp level was found.In starving cells, a decrease in free amino acids was observed to occur concomitantly with the expansion of the ppGpp pool. The level of free amino acids started to increase simultaneously with the contraction of the ppGpp pool.  相似文献   

19.
The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram‐negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram‐positive Bacillus subtilis to fatty acid starvation. B. subtilis lacking all three (p)ppGpp‐synthetases (RelBs, RelP and RelQ) or bearing a RelBs variant that no longer synthesizes (p)ppGpp suffer extreme loss of viability on lipid starvation. Loss of viability is paralleled by perturbation of membrane integrity and function, with collapse of membrane potential as the likely cause of death. Although no increment of (p)ppGpp could be detected in lipid starved B. subtilis, we observed a substantial increase in the GTP/ATP ratio of strains incapable of synthesizing (p)ppGpp. Artificially lowering GTP with decoyinine rescued viability of such strains, confirming observations that low intracellular GTP is important for survival of nutritional stresses. Altogether, our results show that activation of the stringent response by lipid starvation is a broadly conserved response of bacteria and that a key role of (p)ppGpp is to couple biosynthetic processes that become detrimental if uncoordinated.  相似文献   

20.
The guanosine 3′,5′-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 μm relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 μm. The IC50 of ppGpp for GKpm was ∼10 μm. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers'' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号