首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exposure of proteins to the hydroxyl radical (.OH) or to the combination of .OH plus the superoxide anion radical (.OH + O2-) causes gross structural modification. Such modified proteins can undergo spontaneous fragmentation or can exhibit substantial increases in proteolytic susceptibility. In the present study, with the representative protein bovine serum albumin (BSA), we report that alterations to primary structure underlie such gross structural modifications. All amino acids in BSA were susceptible to modification by both .OH and .OH + O2- +O2), although tryptophan, tyrosine, histidine, and cysteine were particularly sensitive. At a radical/BSA molar ratio (nmol of radicals/nmol of BSA) of 10, we observed an average 9-10% destruction of amino acids; whereas at a ratio of 100, the average loss was 45%. Decreasing tryptophan fluorescence provided a useful index of amino acid loss and exhibited a clear dose dependence with .OH or with .OH + O2- (+O2). Linear production of the biphenol bityrosine was observed with .OH treatment. In contrast, .OH + O2- (+O2) induced only a limited bityrosine production rate which reached an early plateau. Studies with various chemical scavengers (t-butyl alcohol, isopropyl alcohol, mannitol, urate) and gasses (N2O, N2, O2, air) revealed that .OH is the primary radical responsible for all amino acid modifications, but that O2- and O2 can further transform the products of .OH reactions. Thus, O2-/O2 can potentiate .OH-dependent destruction of many amino acids (e.g. tryptophan) while inhibiting production of bityrosine by reacting with tyrosyl (phenoxyl) radicals. No amino acid loss or bityrosine production occurred with exposure to O2- (+O2) alone. Amino acid modifications caused both by .OH alone and by .OH + O2- (+O2) progressively affected the overall electrical charge of BSA. In a pH range of 3.7-6.2, some 16 new isoelectric focusing bands were induced by .OH, and some eight new bands were induced by .OH + O2- (+O2). The alterations to primary structure observed provide the key to an understanding of the link between oxidative modification and increased proteolytic susceptibility.  相似文献   

2.
Proteins which have been exposed to the hydroxyl radical (.OH) or to the combination of .OH plus the superoxide anion radical and oxygen (.OH + O2- + O2) exhibit altered primary structure and increased proteolytic susceptibility. The present work reveals that alterations to primary structure result in gross distortions of secondary and tertiary structure. Denaturation/increased hydrophobicity of bovine serum albumin (BSA) by .OH, or by .OH + O2- + O2 was maximal at a radical/BSA molar ratio of 24 (all .OH or 50% .OH + 50% O2-). BSA exposed to .OH also underwent progressive covalent cross-linking to form dimers, trimers, and tetramers, partially due to the formation of intermolecular bityrosine. In contrast, .OH + O2- + O2 caused spontaneous BSA fragmentation. Fragmentation of BSA produced new carbonyl groups with no apparent increase in free amino groups. Fragmentation may involve reaction of (.OH-induced) alpha-carbon radicals with O2 to form peroxyl radicals which decompose to fragment the polypeptide chain at the alpha-carbon, rather than at peptide bonds. BSA fragments induced by .OH + O2- + O2 exhibited molecular weights of 7,000-60,000 following electrophoresis under denaturing conditions, but could be visualized as hydrophobic aggregates in nondenaturing gels (confirmed with [3H]BSA following treatment with urea or acid). Combinations of various chemical radical scavengers (mannitol, urate, t-butyl alcohol, isopropyl alcohol) and gases (N2O, O2, N2) revealed that .OH is the primary species responsible for alteration of BSA secondary and tertiary structure. Oxygen, and O2- serve only to modify the outcome of .OH reaction. Furthermore, direct studies of O2- + O2 (in the absence of .OH) revealed no measurable changes in BSA structure. The process of denaturation/increased hydrophobicity was found to precede either covalent cross-linking (by .OH) or fragmentation (by .OH + O2- + O2). Denaturation was half-maximal at a radical/BSA molar ratio of 9.6, whereas half-maximal aggregation or fragmentation occurred at a ratio of 19.4. Denaturation/hydrophobicity may hold important clues for the mechanism(s) by which oxygen radicals can increase proteolytic susceptibility.  相似文献   

3.
E. coli contains a soluble proteolytic pathway which can recognize and degrade oxidatively denatured proteins and protein fragments, and which may act as a "secondary antioxidant defense." We now provide evidence that this proteolytic pathway is distinct from the previously described ATP-dependent, and protease "La"-dependent, pathway which may degrade other abnormal proteins. Cells (K12) which were depleted of ATP, by arsenate treatment or anaerobic incubation (after growth on succinate), exhibited proteolytic responses to oxidative stress which were indistinguishable from those observed in cells with normal ATP levels. Furthermore, the proteolytic responses to oxidative damage by menadione or H2O2 were almost identical in the isogenic strains RM312 (a K12 derivative) and RM1385 (a lon deletion mutant of RM312). Since the lon (or capR) gene codes for the ATP-dependent protease "La," these results indicate that neither ATP nor protease "La" are required for the degradation of oxidatively denatured proteins. We next prepared cell-free extracts of K12, RM312, and RM1385 and tested the activity of their soluble proteases against proteins (albumin, hemoglobin, superoxide dismutase, catalase) which had been oxidatively denatured (in vitro) by exposure to .OH, .OH + O2- (+O2), H2O2, or ascorbate plus iron. The breakdown of oxidatively denatured proteins was several-fold higher than that of untreated proteins in extracts from all three strains, and ATP did not stimulate degradation. Incubation of extracts at 45 degrees C, which inactivates protease "La," actually stimulated the degradation of oxidatively denatured proteins. Although Ca2+ had little effect on proteolysis, serine reagents, transition metal chelators, and hemin effectively inhibited the degradation of oxidatively denatured proteins in both intact cells and cell-free extracts. Degradation of oxidatively denatured proteins in cell-free extracts was maximal at pH 7.8, and was unaffected by dialysis of the extracts against membranes with molecular weight cutoffs as high as 50,000. Our results indicate the presence of a neutral, ATP- and calcium- independent proteolytic pathway in the E. coli cytosol, which contains serine- and metallo- proteases (with molecular weights greater than 50,000), and which preferentially degrades oxidatively denatured proteins.  相似文献   

4.
Proteolytic degradation of oxidatively damaged [3H] bovine serum albumin [( 3H]BSA) was studied during incubation with cell-free erythrocyte extracts and a wide variety (14) of purified proteases. [3H]BSA was pretreated by exposure (60Co radiation) to the hydroxyl radical (.OH), the superoxide anion radical (O2-), or the combination of .OH + O2- + oxygen. Treated (and untreated) samples were dialyzed and then incubated with erythrocyte extract or proteases for measurements of proteolytic susceptibility (release of acid-soluble counts). Both .OH and .OH + O2- + caused severalfold increases in proteolytic susceptibility (with extract and proteases), but O2- alone had no effect. Proteolytic susceptibility reached a maximum at 15 nmol of .OH/nmol of BSA and declined thereafter. In contrast, proteolytic susceptibility was still increasing at an .OH + O2-/BSA molar ratio of 100 (50% .OH + 50% O2-). Degradation in erythrocyte extracts was conducted by a novel ATP- and Ca2+-independent pathway, with maximal activity at pH 7.8. Inhibitor profiles indicate that this pathway may involve metalloproteases and serine proteases. Comparisons of proteolytic susceptibility with multiple modifications to BSA primary, secondary, and tertiary structure revealed a high correlation (r = 0.98) with denaturation/increased hydrophobicity by low concentrations of .OH. Covalent aggregation reactions (BSA cross-linking) may explain the declining proteolytic susceptibility observed at .OH/BSA molar ratios greater than 20. Protein denaturation may also have caused the increased proteolytic susceptibility induced by .OH + O2- + O2, but no simple correlation could be obtained. Results with .OH + O2- + O2 appear to have been complicated by direct BSA fragmentation reactions involving (.OH-induced) protein radicals and oxygen. These data indicate a direct and quantitative relationship between protein damage by oxygen radicals and increased proteolytic susceptibility. Oxidative denaturation may exemplify a simple, yet effective inherent mechanism for intracellular proteolysis.  相似文献   

5.
We have suggested that red blood cell proteolytic systems can degrade oxidatively damaged proteins, and that both damage and degradation are independent of lipid peroxidation (Davies, K. J. A., and Goldberg, A. L. (1987) J. Biol. Chem. 262, 8220-8226. These ideas have now been tested in cell-free extracts of rabbit erythrocytes and reticulocytes. Exposure to oxygen radicals or H2O2 increases the degradation of endogenous proteins in cell-free extracts, as in intact cells. Various radical-generating systems (acetaldehyde or xanthine + xanthine oxidase, ascorbic acid + iron, H2O2 + iron) and H2O2 alone enhanced the rates of proteolysis severalfold. Since these extracts were free of membrane lipids, protein damage and degradation must be independent of lipid peroxidation. An antioxidant buffer consisting of HEPES, glycerol, and dithiothreitol inhibited the increased proteolysis by 60-100%. Mannitol caused a 50-80% reduction in proteolysis suggesting that the hydroxyl radical (.OH), or a species with similar reactivity, may be the initiator of protein damage. When casein or bovine serum albumin were exposed to .OH (generated by H2O2 + Fe2+, or COCo radiation) these proteins were degraded up to 50 times faster than untreated proteins during subsequent incubations with red cell extracts. Mannitol inhibited this increase in proteolysis only if present during .OH exposure; mannitol did not affect the degradative system. Although ATP increased the degradation of untreated proteins 4- to 6-fold in reticulocyte extracts, it had little or no effect on the degradation of proteins exposed to .OH. ATP also did not stimulate hydrolysis of .OH-treated proteins in erythrocyte extracts. Leupeptin did not affect the degradative processes in either extract; thus lysosomal or Ca2+-activated thiol proteases were not involved. We propose that red cells contain a soluble, ATP-independent proteolytic pathway which may protect against the accumulation of proteins damaged by .OH or other active oxygen species.  相似文献   

6.
The effect of H2O2 and the hydroxyl radical (.OH) on fibronectin was investigated. .OH was generated in three ways: (i) by radiolysis with 60Co under N2O, or by the Fenton system using either (ii) equimolar Fe(2+)-EDTA and H2O2 or (iii) H2O2 and catalytic amounts of Fe(2+)-EDTA recycled with ascorbate. Each system had a different effect. H2O2 alone caused no changes, even at an 800-fold molar excess. Radiolytic .OH caused a rapid loss of tryptophan fluorescence, an increase in bityrosine fluorescence, and extensive crosslinking. The Fenton system using Fe-EDTA, H2O2, and ascorbate caused a loss in tryptophan fluorescence, a smaller increase in bityrosine than was seen with radiolytic .OH, and a threefold increase in carbonyl groups. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis fragmentation of fibronectin was seen. In contrast, when .OH was generated with equimolar Fe-EDTA and H2O2, the only change was a small increase in bityrosine fluorescence at the highest dose of oxidant. None of the systems used affected cysteine. All the changes except the loss of tryptophan by radiolytic .OH were completely inhibited with mannitol. The differences seen with radiolytic .OH and the Fe-EDTA, H2O2, ascorbate system were not solely due to O2 in the latter system since similar results were obtained under N2. The differences between radiolytic .OH and the Fenton systems could be partly due to the components of the latter systems reacting with .OH and thus competing with fibronectin. Our results demonstrate that the extent and type of fibronectin damage by .OH is dependent on the mode of radical generation.  相似文献   

7.
Degradation of oxidatively denatured proteins in Escherichia coli   总被引:7,自引:0,他引:7  
When exposed to oxidative stress, by oxygen radicals or H2O2, E. coli exhibited decreased growth, decreased protein synthesis, and dose-dependent increases in protein degradation. The quinone menadione induced proteolysis when cells were incubated in air, but was not effective when cells were incubated without oxygen. Anaerobically grown cells also exhibited significantly lower proteolytic capacity than did cells that were grown aerobically. Xanthine plus xanthine oxidase (which generate O2- and H2O2) caused a stimulation of proteolysis which was inhibitable by catalase, but not by superoxide dismutase: Indicating that H2O2 was responsible for the increased protein degradation. Indeed, H2O2 alone was effective in inducing increased intracellular proteolysis. Two-dimensional polyacrylamide gel electrophoresis of [3H]leucine labeled E. coli revealed greater than 50% decreases in the concentrations of 10-15 cell proteins following H2O2 or menadione exposure, while several other proteins were less severely affected. To test for the presence of soluble proteases, we prepared cell-free extracts of E. coli and incubated them with radio-labeled protein substrates. E. coli extracts degraded casein and globin polypeptides at rapid rates but showed little activity with native proteins such as superoxide dismutase, hemoglobin, bovine serum albumin, or catalase. When these same proteins were denatured by exposure to oxygen radicals or H2O2, however, they became excellent substrates for degradation in E. coli extracts. Studies with albumin revealed correlations greater than 0.95 between the degree of oxidative denaturation and proteolytic susceptibility. Pretreatment of E. coli with menadione or H2O2 did not increase the proteolytic capacity of cell extracts; indicating that neither protease activation, nor protease induction were required.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Aqueous extract of cigarette smoke (CS) contains some stable oxidants, which oxidize human plasma proteins, bovine serum albumin, amino acid homopolymers, and also cause extensive oxidative degradation of microsomal proteins. Similar observations are made when the aqueous extract of cigarette smoke is replaced by whole phase CS solution or whole phase cigarette smoke. CS-induced microsomal protein degradation is a two step process: (i) oxidation of proteins by the oxidants present in the CS and (ii) rapid proteolytic degradation of the oxidized proteins by proteases present in the microsomes. Using aqueous extract of CS equivalent to that produced from one-twentieth of a cigarette, the observed initial and postcigarette smoke treated values of different parameters of oxidative damage per milligram of microsomal proteins are respectively: 0.24 and 1.74 nmoles for carbonyl formation, 125.4 and 62.8 fluorescence units for tryptophan loss, 10.2 and 33.4 fluorescence units for bityrosine formation, and 58.3 and 12.2 nmoles for loss of protein thiols. When compared with sodium dodecyl sulphate polyacrylamide gel electrophoresis profiles of untreated microsomal proteins, the extent of microsomal protein degradation after treatment with whole phase CS solution or aqueous extract of CS is above 90%. Ascorbate (100 microM) almost completely prevents cigarette smoke-induced protein oxidation and thereby protects the microsomes from subsequent proteolytic degradation. Glutathione is partially effective, but other antioxidants including superoxide dismutase, catalase, vitamin E, probucol, beta-carotene, mannitol, thiourea, and histidine are ineffective. The gas phase cigarette smoke contains unstable reactive oxygen species such as superoxide (O2*-) and hydrogen peroxide (H2O2) that can cause substantial oxidation of pure protein like albumin but is unable to produce significant oxidative damage of microsomal proteins. Gas phase cigarette smoke-induced albumin oxidation is not only inhibited by ascorbate and glutathione but also by superoxide dismutase, catalase and mannitol. The stable oxidants in the cigarette smoke are not present in the tobacco and are apparently produced by the interaction of O2*-/H2O2/OH* of the gas phase with some components of the tar phase during/following the burning of tobacco.  相似文献   

9.
The cupro-zinc enzyme superoxide dismutase (SOD) undergoes an irreversible (oxidative) inactivation when exposed to its product, hydrogen peroxide (H2O2). Recent studies have shown that several oxidatively modified proteins (e.g., hemoglobin, albumin, catalase, etc.) are preferentially degraded by a novel proteolytic pathway in the red blood cell. We report that bovine SOD is oxidatively inactivated by exposure to H2O2, and that the inactivated enzyme is selectively degraded by proteolytic enzymes in cell-free extracts of bovine erythrocytes. For example, 95% inactivation of SOD by 1.5 mM H2O2 was accompanied by a 106 fold increase in the proteolytic susceptibility of the enzyme during (a subsequent) incubation with red cell extract. Both SOD inactivation and proteolytic susceptibility increased with H2O2 concentration and/or time of exposure to H2O2. Pre-incubation of red cell extracts with metal chelators, serine reagents, or sulfhydryl reagents inhibited the (subsequent) preferential degradation of H2O2-modified SOD. Furthermore, a slight inhibition of degradation was observed with the addition of ATP. We suggest that H2O2-inactivated SOD is recognized and preferentially degraded by the same. ATP-independent, metallo- serine- and sulfhydryl- proteinase pathway which degrades other oxidatively denatured red cell proteins. Related work in this laboratory suggests that this novel proteolytic pathway may actually consist of a 700 kDa enzyme complex of proteolytic activities. Mature red cells have no capacity for de novo protein synthesis but do have extremely high concentrations of SOD. Red cell SOD generates (and is, therefore, exposed to) H2O2 on a continuous basis, by dismutation of superoxide (from hemoglobin autooxidation and the interaction of hemoglobin with numerous xenobiotics).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The influence of limited oxidation of glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) and myoglobin by singlet oxygen and by hydroxyl radicals was investigated. The intrinsic fluorescence of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase decreased rapidly during oxidation, indicating a conformational change of the protein molecules. The free energy of isothermal unfolding in urea solutions was increased by singlet oxygen, but decreased by hydroxyl radical attack. The velocity of refolding of the denatured protein after dilution of the denaturant was increased by exposure to either singlet oxygen or hydroxyl radicals, with one exception: the velocity of refolding of myoglobin, oxidized by singlet oxygen, was strongly decreased. Hydroxyl radicals produced covalently crosslinked protein aggregates and some fragmentation, whereas singlet oxygen produced only crosslinked aggregates with glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase. All oxidized proteins were more susceptible to proteolysis by elastase and proteinase K, as compared to the undamaged proteins. Singlet oxygen-induced crosslinked aggregates were degraded very rapidly by elastase. Hydroxyl radical-induced aggregates of glyceraldehyde-3-phosphate dehydrogenase were also degraded very rapidly by this enzyme, but hydroxyl radical-induced aggregates of alcohol dehydrogenase were resistent to enzymatic degradation. The results indicate that limited protein oxidation may have a pronounced influence on several properties of the protein. The effects vary, however, with varying proteins and with the oxidizing species.  相似文献   

11.
Defined radical species generated radiolytically were allowed to attack proteins in solution. The hydroxyl radical (OH.) in the presence of O2 degraded bovine serum albumin (BSA) to specific fragments detectable by SDS/polyacrylamide-gel electrophoresis; fragmentation was not obvious when the products were analysed by h.p.l.c. In the absence of O2 the OH. cross-linked the protein with bonds stable to SDS and reducing conditions. The superoxide (O2-.) and hydroperoxyl (HO2.) radicals were virtually inactive in these respects, as were several other peroxyl radicals. Fragmentation and cross-linking could also be observed when a mixture of biosynthetically labelled cellular proteins was used as substrate. Carbonyl and amino groups were generated during the reaction of OH. with BSA in the presence of O2. Changes in fluorescence during OH. attack in the absence of O2 revealed both loss of tryptophan and changes in conformation during OH. attack in the presence of O2. Increased susceptibility to enzymic proteolysis was observed when BSA was attacked by most radical systems, with the sole exception of O2-.. The transition-metal cations Cu2+ and Fe3+, in the presence of H2O2, could also fragment BSA. The reactions were inhibited by EDTA, or by desferal and diethylenetriaminepenta-acetic acid ('DETAPAC') respectively. The increased susceptibility to enzymic hydrolysis of radical-damaged proteins may have biological significance.  相似文献   

12.
Radioiodinated, native and denatured bovine serum albumin (albumin) beta-lactoglobulin and cytochrome c were introduced into hepatoma tissue culture cells by erythrocyte-ghost-mediated microinjection, and their rates of degradation were compared. Denatured albumin was degraded at 20% of the rate of undenatured albumin, denatured beta-lactoglobulin was degraded three times faster than undenatured beta-lactoglobulin, while denatured and undenatured cytochrome c were degraded at the same rate. Thus, denaturation does not affect the rates of intracellular breakdown of microinjected proteins in a simple predictable way. Exhaustive methylation did not inhibit the degradation of denatured beta-lactoglobulin or albumin, indicating that, like their undenatured counterparts, they are not degraded via the ubiquitin pathway. In reticulocyte lysates, in the presence of ATP, denatured albumin and beta-lactoglobulin were broken down at slightly slower rates than the parent proteins. Exhaustive methylation of both denatured and undenatured proteins completely abolished their ATP-dependent breakdown. This inhibition is consistent with the hypothesis that free -NH2 groups are required for the attachment of ubiquitin prior to degradation in this system. Removal of an ammonium sulfate fraction from reticulocyte lysates produces a proteolytic system markedly different from the whole lysate [Speiser, S. & Etlinger, J. D. (1983) Proc. Natl Acad. Sci. USA 80, 3577-3580]. In this system both denatured and undenatured albumin and beta-lactoglobulin were degraded essentially independently of ATP. Methylation only slightly decreased the breakdown of denatured proteins, suggesting that they are not degraded via the ubiquitin pathway. A possible explanation of these results is that removal of the ammonium sulfate fraction unmasks an ATP-independent proteolytic system unrelated to the ubiquitin pathway.  相似文献   

13.
Substance P (SP(1-11)) was exposed to a continuous flux of superoxide (O2-) or hydroxyl radicals ((.)OH) in a hypoxanthine (HX)/xanthine oxidase (86 mU) system in the presence of 1 mM deferoxamine and 40 mM D-mannitol or 50 muM FeCI(3). 6H(2)O and 50 muM EDTA, respectively. O2- caused fragmentation between the Phe(7) and Phe(8), whereas (.)OH induced cleavage also between the Phe(8) and Gly(9). Reactive oxygen species H(2)O(2) and HCIO did not cause fragmentation, but modification of the amino acid side chains and/or aggregation with altered hydrophobicity in reverse phase high performance liquid chromatography compared to native SP(1-11). Furthermore, exposure of SP(1-11) to phorbol myristate acetate preactivated neutrophils resuited in products similar to those observed upon exposure to superoxide or hydroxyl radicals in a cell-free HX/xanthine oxidase system. This study suggests that, in contrast to rigid proteins, fragmentation is relatively easily induced in a small peptide like SP(1-11), perhaps due to strain on the peptide and t-carbon bonds caused by the movable, random coil configuration acquired by SP(1-11) in an aqueous solution. Oxidative modification might modulate paracrine actions of SP(1-11) at site of inflammation.  相似文献   

14.
Oxidative damage to bovine serum albumin (BSA) was induced by hydroxyl radical (HO.) generating systems of xanthine oxidase (XO) + EDTA-Fe3+ and ascorbate + EDTA-Fe3+. Formation of bityrosine and loss of tryptophan were observed in the ascorbate + EDTA-Fe3+ system and carbonyl formation was induced by both systems. Mannitol and ethanol very strongly inhibited the carbonyl and/or bityrosine formation, indicating that the oxidative damage to BSA was due to HO(.). The sulfhydryl (SH) groups of BSA were very sensitive to the XO + EDTA-Fe3+ but not to the ascorbate + EDTA-Fe3+ system. Catalase but not hydroxyl radical scavengers or superoxide dismutase strongly inhibited the loss of SH groups, indicating that H2O2 is involved in their oxidation. Fragmentation of BSA was observed during exposure to the XO + EDTA-Fe3+ and ascorbate + EDTA-Fe3+ systems and the products presented a broad band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Little formation of amine groups was observed in these systems, indicating that little peptide bond cleavage occurred. BSA exposed to the ascorbate + EDTA-Fe3+ system was more readily degraded by trypsin than that exposed to the XO + EDTA-Fe3+ system. Elastase degraded BSA exposed to the ascorbate + EDTA-Fe3+ system but not to the XO + EDTA-Fe3+ system.  相似文献   

15.
Bovine heart submitochondrial particles (SMP) were exposed to continuous fluxes of hydroxyl radical (.OH) alone, superoxide anion radical (O2-) alone, or mixtures of .OH and O2-, by gamma radiolysis in the presence of 100% N2O (.OH exposure), 100% O2 + formate (O2- exposure), or 100% O2 alone (.OH + O2- exposure). Hydrogen peroxide effects were studied by addition of pure H2O2. NADH dehydrogenase, NADH oxidase, succinate dehydrogenase, succinate oxidase, and ATPase activities (Vmax) were rapidly inactivated by .OH (10% inactivation at 15-40 nmol of .OH/mg of SMP protein, 50-90% inactivation at 600 nmol of .OH/mg of SMP protein) and by .OH + O2- (10% inactivation at 20-80 nmol of .OH + O2-/mg of SMP protein, 45-75% inactivation at 600 nmol of .OH + O2-/mg of SMP protein). Importantly, O2- was a highly efficient inactivator of NADH dehydrogenase, NADH oxidase, and ATPase (10% inactivation at 20-50 nmol of O2-/mg of SMP protein, 40% inactivation at 600 nmol of O2-/mg of SMP protein), a mildly efficient inactivator of succinate dehydrogenase (10% inactivation at 150 nmol of O2-/mg of SMP protein, 30% inactivation at 600 nmol of O2-/mg of SMP protein), and a poor inactivator of succinate oxidase (less than 10% inactivation at 600 nmol of O2-/mg of SMP protein). H2O2 partially inactivated NADH dehydrogenase, NADH oxidase, and cytochrome oxidase, but even 10% loss of these activities required at least 500-600 nmol of H2O2/mg of SMP protein. Cytochrome oxidase activity (oxygen consumption supported by ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine) was remarkably resistant to oxidative inactivation, with less than 20% loss of activity evident even at .OH, O2-, OH + O2-, or H2O2 concentrations of 600 nmol/mg of SMP protein. Cytochrome c oxidase activity, however (oxidation of, added, ferrocytochrome c), exhibited more than a 40% inactivation at 600 nmol of .OH/mg of SMP protein. The .OH-dependent inactivations reported above were largely inhibitable by the .OH scavenger mannitol. In contrast, the O2(-)-dependent inactivations were inhibited by active superoxide dismutase, but not by denatured superoxide dismutase or catalase. Membrane lipid peroxidation was evident with .OH exposure but could be prevented by various lipid-soluble antioxidants which did not protect enzymatic activities at all.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Glutathione peroxidase is a key enzyme in the antioxidant system of the cells. This enzyme has been shown to be irreversibly inactivated by H2O2, tert-butyl hydroperoxide (tert-BHP) and hydroxyl radicals when incubated without GSH. We observed that in our experimental conditions glutathione peroxidase was not degraded by trypsin or chymotrypsin while degraded by pronase, papa?n, pepsin, and lysosomal proteases. Hydroxyl radicals and superoxide anions but not H2O2 or tert-BHP could also fragment the enzyme on their own. A former incubation with H2O2, tert-BHP, or hydroxyl radicals also increased the proteolytic susceptibility of glutathione peroxidase. Like superoxide dismutase (SOD) and other oxidatively denatured proteins, glutathione peroxidase inactivated by peroxides or free radicals seems to be degraded preferentially by proteases. As hydroxyl radicals can fragment the enzyme by themselves, the increased proteolytic susceptibility afterwards is easily understood while the increased susceptibility induced by H2O2 and tert-BHP seems to be more specific.  相似文献   

17.
18.
The effect of scavengers of oxygen radicals on canine cardiac sarcoplasmic reticulum (SR) Ca2+ uptake velocity was investigated at pH 6.4, the intracellular pH of the ischemic myocardium. With the generation of oxygen radicals from a xanthine-xanthine oxidase reaction, there was a significant depression of SR Ca2+ uptake velocity. Xanthine alone or xanthine plus denatured xanthine oxidase had no effect on this system. Superoxide dismutase (SOD), a scavenger of .O2-, or denatured SOD had no effect on the depression of Ca2+ uptake velocity induced by the xanthine-xanthine oxidase reaction. However, catalase, which can impair hydroxyl radical (.OH) formation by destroying the precursor H2O2, significantly inhibited the effect of the xanthine-xanthine oxidase reaction. This effect of catalase was enhanced by SOD, but not by denatured SOD. Dimethyl sulfoxide (Me2SO), a known .OH scavenger, completely inhibited the effect of the xanthine-xanthine oxidase reaction. The observed effect of oxygen radicals and radical scavengers was not seen in the calmodulin-depleted SR vesicles. Addition of exogenous calmodulin, however, reproduced the effect of oxygen radicals and the scavengers. The effect of oxygen radicals was enhanced by the calmodulin antagonists (compounds 48/80 and W-7) at concentrations which showed no effect alone on Ca2+ uptake velocity. Taken together, these findings strongly suggest that .OH, but not .O2-, is involved in a mechanism that may cause SR dysfunction, and that the effect of oxygen radicals is calmodulin dependent.  相似文献   

19.
A simple chemical system consisting of FeSO4 and H2O2 (Fenton's reagent) was shown to emit light (chemiluminescence). The addition of tryptophan to the reaction markedly enhanced light production. Very little chemiluminescence was observed when H2O2 was omitted from the reaction and when ferric, instead of ferrous, ions were used. Hydroxyl radical (OH.) and singlet oxygen (1 deltagO2) quenchers suppressed chemiluminescence of the FeSO4 + tryptophan + H2O2 system; and, deuterium oxide (2H2O) enhanced chemiluminescence of both FeSO4 reactions. These observations suggest that a radical chain reaction involving both OH. and 1 deltag O2 is responsible for the chemiluminescent reactions. Six iron-containing proteins, some of which are located within granulocytes, all emitted light in the presence of H2O2. Since iron and H2O2 are present in metabolically stimulated granulocytes, it is likely that chemiluminescent reactions similar to the ones demonstrated in this study account for part of the chemiluminescence of activated granulocytes.  相似文献   

20.
Red blood cells (RBC) are thought to be well protected against oxidative stress by the antioxidant, cu-pro-zinc enzyme superoxide dismutase (CuZn SOD) which dismutates O2- to H2O2. CuZn SOD, however, is irreversibly inactivated by its product H2O2. Exposure of intact RBC to H2O2 resulted in the inactivation (up to 50%) of endogenous SOD in a concentration-dependent manner. When RBC were exposed to O2- and H2O2, generated by xanthine + xanthine oxidase, an even greater loss of SOD activity (approximately 75%) was observed. Intracellular proteolysis was markedly increased by exposure to these same oxidants; up to a 12-fold increase with H2O2 and a 50-fold increase with xanthine oxidase plus xanthine. When purified SOD was treated with H2O2, inactivation of the enzyme also occurred in a concentration-dependent manner. Accompanying the loss of SOD activity, the binding of the copper ligand to the active site of the enzyme diminished with H2O2 exposure, as evidenced by an increase in accessible copper. Significant direct fragmentation of SOD was evident only under conditions of prolonged exposure (20 h) to relatively high concentrations of H2O2. Gel electrophoresis studies indicated that under most experimental conditions (i.e. 1-h incubation) H2O2, O2-, and H2O2 + O2- treated SOD experienced charge changes and partial denaturation, rather than fragmentation. The proteolytic susceptibility of H2O2-modified SOD, during subsequent incubation with (rabbit, bovine or human) red cell extracts also increased as a function of pretreatment with H2O2. Both enzyme inactivation and altered copper binding appeared to precede the increase in proteolytic susceptibility (whether measured as an effect of H2O2 concentration or as a function of the duration of H2O2 exposure). These results suggest that SOD inactivation and modification of copper binding are prerequisites for increased protein degradation. Proteolytic susceptibility was further enhanced by H2O2 exposure under alkaline conditions, suggesting that the hydroperoxide anion is the damaging species rather than H2O2 itself. In RBC extracts, the proteolysis of H2O2-modified SOD was inhibited by sulfhydryl reagents, serine reagents, transition metal chelators, and ATP; suggesting the existence of an ATP-independent proteolytic pathway of sulfhydryl, serine, and metalloproteases, and peptidases. The proteolytic activity was conserved in a "Fraction II" of both human and rabbit RBC, and was purified from rabbit reticulocytes and erythrocytes to a 670-kDa proteinase complex, for which we have suggested the trivial name macroxyproteinase. In erythrocytes macroxyproteinase may prevent the accumulation of H2O2-modified SOD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号