首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty autosomal type I loci earlier mapped in goat were comparatively FISH mapped on river buffalo (BBU) and sheep (OAR) chromosomes, noticeably extending the physical map in these two economically important bovids. All loci map on homoeologous chromosomes and chromosome bands, with the exception of COL9A1 mapping on BBU10 (homoeologous to cattle/goat chromosome 9) and OAR9 (homoeologous to cattle/goat chromosome 14). A FISH mapping control with COL9A1 on both cattle and goat chromosomes gave the same results as those obtained in river buffalo and sheep, respectively. Direct G- and R-banding comparisons between Bovinae (cattle and river buffalo) and Caprinae (sheep and goat) chromosomes 9 and 14 confirmed that a simple translocation of a small pericentromeric region occurred between the two chromosomes. Comparisons between physical maps obtained in river buffalo and sheep with those reported in sixteen human chromosomes revealed complex chromosome rearrangements (mainly translocations and inversions) differentiating bovids (Artiodactyls) from humans (Primates).  相似文献   

2.
Regions rich in 5-methylcytosine were localized in male metaphase chromosomes of the Indian muntjac deer (Muntiakus muntjak). Chromosomes were ultraviolet irradiated and subsequently photooxidized in the presence of methylene blue to induce maximum DNA denaturation. Following treatment with anti 5-methylcytosine antibody (anti 5-MeC), regions of antibody binding were visualized by an immunofluorescence or immunopreoxidase staining procedure. All chromosomes showed some level of antibody binding along their length and at centromeric regions, with intense binding evident in the centromere of chromosome 3 and the elongated centromeric "neck" of chromosome 3-X. The Y chromosome displayed low levels of antibody binding. The banding pattern observed with anti 5-MeC is the reverse of that obtained by quinacrine staining.  相似文献   

3.
Presented herein is an updated sheep cytogenetic map that contains 452 loci (291 type I and 161 type II) assigned to specific chromosome bands or regions on standard R-banded ideograms. This map, which significantly extends our knowledge of the physical organization of the ovine genome, includes new assignments for 88 autosomal loci, including 74 type I loci (known genes) and 14 type II loci (SSRs/microsatellite marker/STSs), by FISH-mapping and R-banding. Comparison of the ovine map to the cattle and goat cytogenetic maps showed that common loci were located within homologous chromosomes and chromosome bands, confirming the high level of conservation of autosomes among ruminant species. Eleven loci that were FISH-mapped in sheep (B3GAT2, ASCC3, RARSL, BRD2, POLR1C, PPP2R5D, TNRC5, BAT2, BAT4, CDC5L and OLA-DRA) are unassigned in cattle and goat. Eleven other loci (D3S32, D1S86, BMS2621, SFXN5, D5S3, D5S68, CSKB1, D7S49, D9S15, D9S55 and D29S35) were assigned to specific ovine chromosome (OAR) bands but have only been assigned to chromosomes in cattle and goat.  相似文献   

4.
Bovine BAC clones containing the 31 genes, referred to as the Texas markers used earlier to definitively assign the 31 bovine syntenic groups (U) to cattle chromosomes, were mapped by fluorescent in situ hybridization to sheep and goat R-banded chromosomes according to ISCNDB2000. All 31 markers were localized on homoeologous chromosomes and chromosome bands of the two species in agreement with previous localizations obtained both in cattle and river buffalo, definitively confirming chromosome homoeologies between Caprinae and Bovinae. In addition, we have extended physical maps of sheep and goat as 11 genes (HSD3B1, INHBA, CSN10, IGF2R, PIGR, MAP1B, DSC1, ELN, TNFRSF6, CGN1, IGF2) and 14 genes (SOD1, HSD3B1, CSN10, IGF2R, RB1, TG, PIGR, MAP1B, IGH@, LTF, DSC1, TNFRSF6, CGN1, IGF2) were assigned for the first time to goat and sheep chromosomes, respectively.  相似文献   

5.
Summary Ribosomal gene activity and levels of DNA methylation were investigated by cytochemical and immunological methods in the nucleolar organizer regions (NORs) of individually recognised acrocentric chromosomes. Mendelian inheritance of ribosomal gene activity in a three generation family was demonstrated, together with consistent behaviour of individual gene clusters in different carriers, even when environmental conditions were changed. For most chromosomes, an inverse relationship between gene activity and the level of DNA methylation was observed. Exceptions were the two chromosomes 15 and chromosomes 13cp and 22p, all being strongly chromomycin-A3-positive in their short arms. These chromosomes bound to anti-5-MeC antibodies with differential frequencies in the different carriers. The possibility of involvement of repetitive GC-rich DNA in this behaviour is discussed.  相似文献   

6.
The lactoperoxidase (LPO), retinoblastoma (RB1), and -lactalbumin (LALBA) genes have been mapped by fluorescent in situ hybridization respectively to cattle Chromosomes (Chrs) 19, 12, 5; goat Chrs 19, 12, 5; and sheep Chrs 11, 10, 3. The results confirm the homologies among cattle, sheep, and goat chromosomes, previously reported, and provide more information for the comparison between the bovine and human karyotypes and gene maps.  相似文献   

7.
8.
A panel of polymorphic bovine, ovine and caprine microsatellite markers   总被引:5,自引:1,他引:4  
A panel of 81 new polymorphic bovine microsatellite markers is described, together with further information on a previously reported group of 16 markers. The mean polymorphism information content of the 97 markers determined in 20 cattle was 0.66. Seventythree of these markers have been assigned to chromosomes by either linkage analysis or use of hybrid cell panels. Thirty-nine of the markers were polymorphic in sheep, and 32 were polymorphic in goat. This study identified a set of 18 robust markers that were polymorphic in all three species and that covered 14 bovine chromosomes. This provides a single group of markers, which would be suited to genetic distance analysis and parentage control in cattle, sheep and goat.  相似文献   

9.
River buffalo, sheep, and goat spermatozoa were cross-hybridized using double color fluorescence in situ hybridization (FISH) with bovine Xcen- and Y-chromosome painting probes, prepared by DOP-PCR of laser-microdissected-catapulted chromosomes, to investigate the possibility of using bovine probes for sexing sperm of other members of the family Bovidae. Before sperm analysis, the probes were hybridized on metaphase chromosomes of each species, as control. Frozen-thawed spermatozoa of cattle, river buffalo, sheep, and goat were decondensed in suspension with 5 mM DTT. Sperm samples obtained from three individuals of each species were investigated, more than 1,000 spermatozoa were scored in each animal. FISH analysis of more than 12,000 sperm revealed high level of sperm with X- or Y-signals in all of the species investigated, indicating FISH efficiency over 99%. Significant interspecific differences were detected in the frequency of aberrant spermatozoa (aneuploid and diploid) between goat (0.393%) and sheep (0.033%) (P < 0.01), goat and cattle (0.096%) (P < 0.5), as well as between river buffalo (0.224%) and sheep (P < 0.5). There was no significant difference between river buffalo and cattle. The present study demonstrated that it is possible to use bovine X-Y painting probes for sexing and analyzing sperm of other species of the family, thus facilitating future studies on the incidence of chromosome abnormalities in sperm as well as on sex predetermination of embryos for the livestock industry. Mol. Reprod. Dev. 67: 108-115, 2004.  相似文献   

10.
Chromomycin A3 banding of the mitotic sets of 10 species of Bovidae (cattle, wisent, yak, banteng, gaur, red buffalo, swamp buffalo, sheep, mufflon, and goat) serves to demarcate both centromeric constitutive heterochromatin and R-banding patterns capable of identifying all the chromosomes within a given complement. In all species significant amounts of chromomycin-bright heterochromatin are present at the centromeres of all autosomes, though there was a high degree of intra- and inter-individual variation in the size of the heterochromatic blocks. Marked interspecies differences in the centromeric patterns were evident. The X chromosomes contained appreciable amounts of centromeric heterochromatin only in the two buffaloes. All the animals studied lacked distamycin A - diamidinophenylindole type heterochromatin. AgNO3 staining was applied sequentially to detect the location of active nucleolus organizer regions (NORs). The distribution of NORs was reasonably conservative in most of the species. An exceptional situation was found in the two buffaloes, where only one NOR pair matched with the standard karyotype of the Bovidae.  相似文献   

11.
Sixty autosomal loci (5 type I and 55 type II) from 24 bovine syntenic groups, and previously FISH-mapped to goat and river buffalo chromosomes, were localized by fluorescence in situ on sheep (OVIS ARIES, 2n = 54) chromosomes, thereby notably extending the cytogenetic map of this economically important species. Caprine BAC clones were hybridized to R-banded chromosome preparations. FITC-signals and RBPI- banding (R-banding by late BrdU-incorporation and propidium iodide staining) were simultaneously visualized and captured by a colour CCD-camera. All mapped loci were localized on homoeologous chromosomes and chromosome regions (bands) of sheep, goat and river buffalo, further supporting chromosome and genetic (loci) homoeologies among bovids.  相似文献   

12.
The regional characterization of a previously obtained hamster–sheep hybrid panel is reported. Using data available from ruminant maps (sheep, cattle, and goat), we have selected a set of 300 markers and have analyzed them by PCR in this hybrid panel. Results obtained for 204 markers show the presence of all sheep chromosomes (including gonosomes) in entire or fragmented form. Analysis of syntenies has given 130 types of answer defining segments of variable sizes. This study has led to the regional characterization of this panel and provides comparative data on a set of bovine and caprine markers. With the level of characterization now achieved for this hybrid panel, the regional assignment of new genes or markers to sheep chromosomes can be rapidly obtained. Finally, this panel will help to collect new data for comparative mapping of domestic animals and to highlight the conservation of syntenic groups between closely related species, that is, sheep, cattle, and goat. Received: 14 May 1999 / Accepted: 23 August 1999  相似文献   

13.
There are ten nucleolus organizer regions (NORs) in domestic sheep (Ovis aries L.). cattle (Bos taurus L.), goat (Capra hircus L.) and aoudad (Ammotragus lervia Blyth) and these are located terminally on chromosomes with homologous (G-banding patterns. The similarity in number of nucleolus organizer regions in these species may indicate that their ribosomal DNA regions are infrequently involved in exchange events which could lead to different numbers of active nucleolus organizer regions. Other possible explanations of the conservation of number of nucleolus organizer regions in these species are discussed. The homology of NOR location in these species supports the idea that the Bovidae karyotype tends to be fairly stable apart from changes due to centric fusion events.  相似文献   

14.
Comparative FISH mapping of river buffalo (Bubalus bubalis, BBU), sheep (Ovis aries, OAR), and cattle (Bos taurus, BTA) X chromosomes revealed homologies and divergences between the X chromosomes in the subfamilies Bovinae and Caprinae. Twenty-four and 17 loci were assigned for the first time to BBU X and OAR X, respectively, noticeably extending the physical map in these two species. Seventeen loci (four of which for the first time) were also FISH mapped to BTA X and used for comparative mapping studies on the three species, which show three morphologically different X chromosomes: an acrocentric (BBU X), an acrocentric with distinct short arms (OAR X), and a submetacentric (BTA X). The same order of loci were found on BTA X and BBU X, suggesting that a centromere transposition, with loss (cattle) or acquisition (river buffalo) of constitutive heterochromatin, differentiated the X chromosomes of these two bovids. Comparison of bovine (cattle and river buffalo) and caprine (sheep) X chromosomes revealed at least five common chromosome segments, suggesting that multiple transpositions, with retention or loss of constitutive heterochromatin, had occurred during their karyotypic evolution.  相似文献   

15.
An extensive study on spontaneous and 5-Fluorodeoxyuridine induced fragile sites identified Xq31 in cattle (Bos taurus) and (Xq24, Xq26) in sheep (Ovis aries) in addition to several autosomal fragile sites (under publication). A ZOO-FISH study using three cloned human fragile-X probes with CCG/CGGn trinucleotide repeat sequence was carried out to determine homology between human and bovine fragile-X. The hybridisation results showed only a weak signal on a human chromosome that was not an X with all three fragile site probes. No signals were detected in sheep chromosomes. The signal of all three human fragile-X probes on cattle chromosomes was however, medium-prominent sub-centromeric signal on two homologues. BrdU administration in 12 h before harvesting identified these homologues to be chromosome number 5. In addition retrospective slides of cattle and sheep chromosomes used for fragile site studies showed no signals whatsoever. It was therefore concluded that no homology existed between human and bovine fragile-X.  相似文献   

16.
Sixty-four genomic BAC-clones mapping five type I (ADCYAP1, HRH1, IL3, RBP3B and SRY) and 59 type II loci, previously FISH-mapped to goat (63 loci) and cattle (SRY) chromosomes, were fluorescence in situ mapped to river buffalo R-banded chromosomes, noticeably extending the physical map of this species. All mapped loci from 26 bovine syntenic groups were located on homeologous chromosomes and chromosome regions of river buffalo and goat (cattle) chromosomes, confirming the high degree of chromosome homeologies among bovids. Furthermore, an improved cytogenetic map of the river buffalo with 293 loci from all 31 bovine syntenic groups is reported.  相似文献   

17.
An important problem for livestock production in Mali is occurrence of several infectious diseases. A particular challenge for control of pathogens that affect different species, especially in a system with mixed herds with cattle, sheep and goats. Therefore, this study aimed to investigate co-exposure with Rift Valley fever virus (RVFV), Coxiella burnetii, Bluetongue virus (BTV) and Brucella spp. in different livestock species in mixed herds. With the exception of BTV these pathogens are also zoonotic. A retrospective assessment was carried out on a biobank of sera of cattle and small ruminants collected from Sikasso and Mopti regions. Nine hundred and twelve samples from cattle (n = 304), sheep (n = 318) and goat (n = 290) were screened. Serology tests were conducted using commercial kits as per the protocol of the manufacturers. Sero-prevalence for RVFV was 12.8% (Confidence Interval 95%: 9.3–17.1%); 4.7% (2.7–7.7%) and 3.1% (1.4–5.8%) in cattle, sheep and goat respectively. For Coxiella burnetii, the sero-prevalence was 55.3% (49.5–60.9%), 22.6% (18.2–27.6%), and 16.9% (12.8–21.7%); in cattle, sheep and goat respectively; and for BTV sero-prevalence was 88.8% (84.72–92.13%), 51.6% (45.9–57.2%), 56.2% (50.3–62.0%) in cattle, sheep in goat respectively. Brucella sp. had the lowest sero-prevalence and was only detected in cattle and sheep. Regional differences were observed with sero-prevalence of Coxiella burnetii in sheep and goat with BTV in goat being significantly higher in Sikasso than in Mopti (p<0.001). Evidence of exposure to two pathogens in the same animal was most common for the combination Coxiella burnetii and BTV in cattle (51.6%), followed by sheep (17.0%) and goat (15.5%). Considering the scarcity of disease occurrence and epidemiological data in most sub-saharan countries including Mali, this multi-pathogen survey provides important evidence that cattle, sheep and goat are exposed to pathogens that may negatively impact productivity and pose a risk for public health. The results from this study highlight the urgent need for a better understanding of pathogen diversity and their impact on human and animal health in order to minimize resulting risks. Given that some of the pathogens investigated here are zoonotic, establishment of One-Health surveillance system to monitor disease in animals and people is warranted. Therefore, intersectoral collaboration is recommended.  相似文献   

18.
The regional localization of five reference loci to sheep chromosomes is reported. The newly mapped loci are the T-cell receptor, beta ( TCRB ), coagulation factor X ( F10 ), laminin gamma 1 ( LAMC1 ), cyclic GMP rod phosphodiesterase, alpha ( PDEA ) and fibroblast growth factor 2 ( FGF2 ). The assignments of PDEA and LAMC1 to chromosomes 5q23–q31 and 12q22–q24 respectively provide the first markers physically assigned to these chromosomes. They also allow the provisional assignment of sheep syntenic group U19 to chromosome 5 and U1 to chromosome 12. The mapping of FGF2 to chromosome 17q23–q25 anchors the unassigned linkage group 'A' to chromosome 17, and the assignment of TCRB to chromosome 4q32–qter facilitates the orientation of a linkage group on sheep chromosome 4. The mapping of F10 to sheep chromosome 10q23–qter supports the recent assignment of bovine syntenic group U27 to cattle chromosome 12, as sheep chromosome 10 and cattle chromosome 12 are banded homologues.  相似文献   

19.
The karyotype of the spiny eel (Mastacembelus aculeatus) has highly evolved heteromorphic sex chromosomes. X and Y chromosomes differ from each other in the distribution of heterochromatin blocks. To characterize the repetitive sequences in these heterochromatic regions, we microdissected the X chromosome, constructed an X chromosome library, amplified the genomic DNA using PCR and isolated a repetitive sequence DNA family by screening the library. All family members were clusters of two simple repetitive monomers, MaSRS1 and MaSRS2. We detected a conserved 5S rDNA gene sequence within monomer MaSRS2; thus, tandem-arranged MaSRS1s and MaSRS2s may co-compose 5S rDNA multigenes and NTSs in M. aculeatus. FISH analysis revealed that MaSRS1 and MaSRS2were the main components of the heterochromatic regions of the X and Y chromosomes. This finding contributes additional data about differentiation of heteromorphic sex chromosomes in lower vertebrates.  相似文献   

20.
A series of 31 marker genes (one per chromosome) were localized precisely to both Q- and R-banded bovine chromosomes by fluorescence in situ hybridization (FISH), as a contribution to the revised chromosome nomenclature of the three major domestic bovidae (cattle, sheep and goat). All marker genes except one (LDHA) are taken from the Texas Nomenclature of the cattle karyotype published in 1996. Homologous probes for each marker gene were obtained by screening a bovine BAC library by PCR with specific primer pairs. After labeling with biotin, each probe preparation was divided into two fractions and hybridized to bovine chromosomes identified either by Q or R banding. Clear signals and good quality band patterns were observed in all cases. Results of the two series of hybridizations are totally concordant both for Q and R band chromosome numbering and precise band localization. This work permits an unambiguous correlation between the Q/G- and R-banded 31 bovine chromosomes, including chromosomes 25, 27 and 29 which remained unresolved in the Texas Nomenclature (1996). Hybridization of the chromosome 29 marker gene to metaphase spreads from a 1;29 Robertsonian translocation bull carrier showed a positive signal on the short arm of this rearranged chromosome, confirming that the numbering of this long-known translocation in cattle is correct when referring to the Texas Nomenclature (1996). Taking into account that cattle, goat and sheep have very similar banded karyotypes, the data presented here will help to establish a definite and complete reference chromosome nomenclature for these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号