首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study compared three procedures for normalization of upper trapezius surface electromyographic (EMG) amplitudes: (a) a ramp procedure (providing data in per cent of maximal voluntary contraction, MVC); (b) a constant force procedure based on two reference contractions (two-force procedure) (%MVC) and (c) a procedure expressing muscle activation in per cent of a reference voluntary electrical activity (%RVE). The study also evaluated the repeatability of the ramp and the RVE procedures and estimated the force exertion (%MVC) corresponding to the RVE. To illustrate the ergonomic effect of different normalization procedures, trapezius EMG during two work tasks was compared after normalization by the two-force and the RVE procedures. Fifteen subjects participated in the whole study. We found that force estimates obtained by the ramp procedure equation could be translated to force estimates obtained by the two-force procedure by the equation: %MVC2force = − 0.6 + 0.9*%MVCramp, although with a considerable imprecision due to large inter-individual differences. In the ramp procedure, the intra-individual test-retest coefficient of variation (CV) depended on the force level; it was 45% at 5% MVC and 10% at 30% MVC. The CV of the RVE was 15%. The reference contraction used in the RVE procedure corresponded from 13–79% MVC (median 33%MVC). The load reducing effect of an ergonomic intervention was less obvious with the RVE procedure than with the two-force procedure due to a larger inter-individual variation. The advantages and disadvantages of the different procedures are discussed.  相似文献   

2.
Surface electromyographic (EMG) amplitude from the upper trapezius muscle is widely used as a measure of shoulder-neck load in ergonomic studies. A variety of methods for normalizing EMG amplitude from the upper trapezius (EMGamput) have been presented in the literature. This impedes meta-analyses of, for instance, upper trapezius load in relation to development of shoulder-neck disorders. The review offers a thorough discussion of different normalization procedures for EMGamput. The following main issues are focused: output variable, location of electrodes, posture and attempted movement during normalization, load and duration of reference contractions, signal processing and test-retest repeatability. It is concluded that translations of EMGamput into biomechanical variables, for example relative force development in the shoulder or in the upper trapezius itself, suffer from low validity, especially if used in work tasks involving large and/ or fast arm movements. The review proposes a standard terminology relating to normalization of EMGamput and concludes in a concrete suggestion for a normalization procedure generating bioelectrical variables which reflect upper trapezius activation.  相似文献   

3.
Calculation of the EMG mean power frequency (MPF) is a common procedure applied in evaluation of the frequency shift associated with local muscle fatigue. Variations of the MPF that are unrelated to muscle fatigue may jeopardize the estimation of the frequency shift. Different kinds of variation include random variation and systematic variation due to changes in posture or load. In a previous article we have evaluated the systematic linear variation of the MPF. The aim of the present study was to examine the random variation. Data sequences of 10 s, each obtained from nonfatigued trapezius muscle of 19 healthy subjects, were examined over a functional range of load and joint angles with multiple regression analysis. The random variation was evaluated with residual analysis. The residual standard deviation within the whole group was 10% for surface recordings and 13% for intramuscular recordings. If only within-subject variation was considered, the corresponding values were 5 and 8%. Based on this, confidence and prediction intervals for the regression models were calculated. Ninety-five percent confidence intervals were ±1–3% around the regression surfaces, whereas 95% prediction intervals for single measurements were as large as ±20–26% for the whole group, and ±11–20% if only within-subject variations were considered. Assessment of localized muscle fatigue using single MPF estimates should therefore be avoided. Multiple measurements and regression analysis are discussed as methods to minimize the effects of random variations.  相似文献   

4.
The electromyographic (EMG) activity pattern across the upper trapezius of 22 healthy subjects was investigated during maximal isometric contractions. Eight bipolar surface electrodes with 10 mm distance between adjacent electrode pairs were placed on a line from the clavicle to the scapula. At the region near the clavicle the highest EMG amplitudes were recorded during 90 ° arm abduction. At the more posterior parts the highest amplitudes were found both during arm abduction and shoulder elevation. A double differential recording technique which reduced the EMG cross-talk contribution supported the finding that the upper trapezius was differently activated when the arm posture was changed. The normalized EMG amplitude-force relationship during the shoulder elevation showed a curvilinear relationship on the anterior part of the upper trapezius with a slower increase in EMG amplitude than force at low force. The slope of the curve, at low force, increased gradually in the posterior direction on the upper trapezius. The EMG activity patterns across the upper trapezius indicate a flexibility in motor activation which maybe reflects a functional optimization of the contractions performed by this muscle.  相似文献   

5.
Muscle fatigue and calibration of EMG measurements   总被引:3,自引:0,他引:3  
Amplitude electromyography (EMG) is often used as an estimator of muscular load. Such measurements can, however, be biased by other factors, for example muscular fatigue. The aim of this study was to examine the influence of fatigue on amplitude parameters of the EMG. The test subjects raised the arm to 909 of abduction in the plane of the scapula. The hand was loaded with 0, 1 and 2 kg during 5, 3 and 2 min respectively. EMG was recorded from the trapezius muscle, and spectral and amplitude parameters were calculated. There was a significant rise of the EMG amplitude as a sign of fatigue at all load levels: 7% min−1 at 0 kg, 15% min−1 at 1 kg, and 19% min−1 at 2 kg. At 0 kg hand load there was no change of the spectral parameters but at higher load levels there was a significant decline of mean power frequency: 3% min−1 at 1 kg and 11% at 2 kg. The amplitude rise due to muscle fatigue may seriously jeopardize calibration measurements unless the duration of the load is kept limited.  相似文献   

6.
The importance of arm-raising has been a major consideration in the functional interpretation of differences in shoulder morphology among species of nonhuman primates. Among the characters that have been associated with enhancement of the arm-raising mechanism in hominoid primates are the relative enlargement of cranial trapezius and caudal serratus anterior, as the main scapular rotators, as well as changes in scapular morphology associated with their improved leverage for scapular rotation. Yet in an EMG study of cranial trapezius and caudal serratus anterior function in the great apes, Tuttle and Basmajian (Yrbk. Phys. Anthropol. 20:491-497, 1977) found these muscles to be essentially inactive during arm-raising. Although Tuttle and Basmajian suggest that the cranial orientation of the glenoid fossa in apes has reduced the demand for scapular rotation during arm-raising, subsequent EMG studies on other primate species suggest that these muscles do play a significant role in arm motion during active locomotion. This paper presents a reexamination of muscle recruitment patterns for trapezius and caudal serratus anterior in the chimpanzee. All but the lowest parts of caudal serratus anterior were found to be highly active during arm-raising motions, justifying earlier morphological interpretations of differences in caudal serratus anterior development. The lowest digitations of this muscle, while inactive during arm-raising, displayed significant activity during suspensory postures and locomotion, presumably to control the tendency of the scapula to shift cranially relative to the rib cage. Cranial trapezius did not appear to be involved in arm-raising; instead, its recruitment was closely tied to head position.  相似文献   

7.
The feasibility of action potential velocity (APV) measurements in the upper trapezius muscle with surface electrodes has been investigated. A four-bar electrode array connected to a double differential amplifier system was used. APV was estimated by a polarity correlation algorithm implemented on a PC computer. Six females and six males participated in the investigation. Attempts to get acceptable APV estimates were made in five electrode locations, 5 mm interspaced along the upper rim, beginning in the most distal part. Data were collected while holding out the arm horizontally in the sagittal plane. The results indicate that the method worked in five out of six males while it was difficult to get reliable estimates in the female group. Furthermore, the two most distal electrode locations gave the best results. In these two locations, the average APV for males was 4.8 m s−1, 0.9. The difficulties in the female group were possibly due to small muscle dimensions and subcutaneous fat. Use of the double differential technique seems to be essential; attempts with the single differential technique were fruitless.  相似文献   

8.
Surface electromyographic (EMG) amplitude and mean power frequency (MPF) were used to study the isometric muscular activity of the right versus the left upper trapezius muscles in 14 healthy right-handed women. The EMG activity was recorded simultaneously with force signals during a 10-15 s gradually increasing exertion of force, up to maximal force. Only one side at a time was tested. On both sides there was a significant increase in EMG amplitude (microV) during the gradually increasing force from 0% to 100% maximal voluntary contraction (MVC). The right trapezius muscle showed significantly less steep slopes for regression of EMG amplitude versus force at low force levels (0%-40% MVC) compared intra-individually with high force levels (60%-100% MVC). This was not found for the left trapezius muscle. At 40% MVC a significantly lower MPF value was found for the right trapezius muscle intra-individually compared with the left. An increase in MPF between 5% and 40% MVC was statistically significant when both sides were included in the test. The differences in EMG activity between the two sides at low force levels could be due to more slow-twitch (type I fibres) motor unit activity in the right trapezius muscles. It is suggested that this is related to right-handed activity.  相似文献   

9.
Analysis of functional movements using surface electromyography (EMG) often involves recording both eccentric and concentric muscle activity during a stretch-shorten cycle (SSC). The techniques used for amplitude normalization are varied and are independent of the type of muscle activity involved. The purpose of this study was: (i) to determine the effect of 11 amplitude normalization techniques on the coefficient of variation (CV) during the eccentric and concentric phases of the SSC; and (ii) to establish the effect of the normalization techniques on the EMG signal under variable load and velocity. The EMG signal of the biceps brachii of eight normal subjects was recorded under four SSC conditions and three levels of isometric contraction. The 11 derived normalization values were total rms, mean rms and peak rms (100 ms time constant) for the isometric contractions and the mean rms and peak rms values of the ensemble values for each set of isotonic contractions. Normalization using maximal voluntary isometric contractions (MVIC), irrespective of rms processing (total, mean or peak), demonstrated greater CV above the raw data for both muscle actions. Mean ensemble values and submaximal isometric recordings reduced the CV of concentric data. No amplitude normalization technique reduced the CV for eccentric data under loaded conditions. An ANOVA demonstrated significant (P < 0.01) main effects for load and velocity on concentric raw data and an interaction (P < 0.05) for raw eccentric data. No significant effects were demonstrated for changes in velocity when the data were normalized using mean rms values. The reduction of the CV should not be at the expense of true biological variance and current normalization techniques poorly serve the analysis of eccentric muscle activity during the SSC.  相似文献   

10.
While much is known about the physiological basis of local muscular fatigue, little is known about the kinematic and electromyographic (EMG) consequences of brief fatiguing isometric contractions. Five male subjects performed a horizontal elbow flexion-extension reversal movement over 90° in 250 ms to reversal before and after one of five single maximal isometric elbow flexions ranging in duration from 15–120 s. Surface EMG signals were recorded from the biceps brachii, the long head of the triceps, the clavicular portion of the pectoralis major, and the posterior deltoid. Spatial and temporal errors were computed from potentiometer output. During the fatiguing bouts, maximum voluntary force dropped linearly an average of 4% in the 15 s condition and 58% in the 120 s condition relative to maximum force. The associated biceps rectified-integrated EMG signal increased from the onset of each fatigue bout for 15–30 s, then decreased over the remainder of the longer bouts. Following the fatigue bout, subjects undershot the target distance on the first movement trial in all conditions. Following short fatigue durations (i.e. 15–30 s), the peak biceps EMG amplitude was disrupted and movement velocity decreased, but both measures recovered within seconds. As fatigue duration increased, progressive decreases in peak velocity occurred with increased time to reversal, reduced EMG amplitude, and longer recovery times. However, the relative timing of the EMG pattern was maintained suggesting the temporal structure was not altered by fatigue. The findings suggest that even short single isometric contractions can disrupt certain elements of the motor control system.  相似文献   

11.
To assess the surface electromyographic spectral characteristics of masticatory and neck muscles during the performance of maximum voluntary clench (MVC) tasks, 29 healthy young adults (15 men, 14 women, mean age 22 years) were examined. Electromyography of masseter, temporalis and upper trapezius muscles was performed during 5-s MVCs either on cotton rolls or in intercuspal position. Using a fast Fourier transform, the median power frequency (MPF) was obtained for the first and last seconds of clench, and compared between sexes, muscles, sides, tests and time intervals using ANOVAs.On average, the MPFs did not differ between sexes or sides (p > 0.05), but significant effects of muscle (MPF temporalis larger than masseter, larger than trapezius muscles), test (larger MPFs when clenching in intercuspal position than when clenching on cotton rolls) and time (larger MPFs in the first than in the fifth second of clench) were found.In conclusion, a set of data to characterize the sEMG spectral characteristics of jaw and neck muscles in young adult subjects performing MVC tasks currently in use within the dental field was obtained. Reference values may assist in the assessment of patients with alterations in the cranio-cervical-mandibular system.  相似文献   

12.
EMG median power frequency of the calf muscles was investigated during an exhausting treadmill exercise. This exercise was an uphill run, the average endurance time was 1.5 min. Median power frequency of the calf muscles declined by more than 10% during this exercise. In addition EMG median power frequency of isometric contractions of the same muscles was measured before and in one minute intervals for 10 min after this run. Immediately after the run isometric median power frequency had declined by less than 5% for the soleus muscle, more than 10% for the gastrocnemius medialis and gastrocnemius lateralis muscles. In the 10 min following exercise the isometric median power frequency increased to pre-execise levels. Maybe the median power frequency shift to lower frequencies during dynamic exercise can be interpreted as a sign of local muscle fatigue.  相似文献   

13.
This report addresses some of the statistical problems that are encountered when the test/retest recording reliability of fatigue-related parameters of the EMG power spectrum is evaluated. It can be shown that some classical methods for reliability assessment such as correlational procedures are unsuitable for this purpose. Because the EMG power spectrum fatigue parameter depends on metabolic changes in muscle tissue, it is suggested that methods similar to those used in the evaluation of bioequivalence studies may be more appropriate in the assessment of such test/retest results.  相似文献   

14.
The identification of the motor unit (MU) innervation zone (IZ) using surface electromyographic (sEMG) signals detected on the skin with a linear array or a matrix of electrodes has been recently proposed in the literature. However, an analysis of the reliability of this procedure and, therefore, of the suitability of the sEMG signals for this purpose has not been reported.The purpose of this work is to describe the intra and inter-rater reliability and the suitability of surface EMG in locating the innervation zone of the upper trapezius muscle.Two operators were trained on electrode matrix positioning and sEMG signal analysis. Ten healthy subjects, instructed to perform a series of isometric contractions of the upper trapezius muscle participated in the study. The two operators collected sEMG signals and then independently estimated the IZ location through visual analysis.Results showed an almost perfect agreement for intra-rater and inter-rater reliability. The constancy of IZ location could be affected by the factors reflecting the population of active MUs and their IZs, including: the contraction intensity, the acquisition period analyzed, the contraction repetition. In almost all cases the IZ location shift due to these factors did not exceed 4 mm. Results generalization to other muscles should be made with caution.  相似文献   

15.
This study has localised oxytocin receptor (OTR) mRNA expression within the cervix of non-pregnant ewes and related this to changes in the sensitivity of the cervical musculature to administered oxytocin (OT) during the oestrous cycle by recording electromyographic (EMG) activity. Cervices were collected from 34 ewes at specified time points throughout the cycle. OTR mRNA expression was localised by in situ hybridisation and results were expressed as optical density measurements from autoradiographs in each of four different cervical regions. EMG recordings were made for up to 8 h per day from four non-pregnant ewes undergoing seasonal oestrous cycles between Days −3 and +3 relative to oestrus (Day 0). The highest concentrations of OTR mRNA were detectable within the luminal epithelium (LE) of the cervix, with values increasing from Day 15 of the cycle, peaking during the follicular phase (P<0.001, compared to the mid-luteal phase) and returning to basal by Day 2. There was a small but significant increase in OTR mRNA hybridisation (above basal/luteal phase values) within the stromal cells (STR) adjacent to the lumen (P<0.05) during the same time period, but no differences from basal values were detectable in the dense collagenous annular ring or in tissue superficial to this. Analysis of pooled EMG activity recorded daily from the cervix indicated that endogenous contractile activity was higher on Day 0 than on the Days +1 (P<0.05), −2, +2 and +3 (P<0.001). The response to bolus intravenous (i.v.) injections of 25 mU OT (25 mU) varied with day of the cycle. This dose produced a measurable and significant response on Days 0 (P<0.001) and +1 (P<0.001), but not on any of the other days, indicating that the sensitivity of the cervical musculature to OT peaked on these days. These data show that the cervix is highly responsive to OT at oestrus. This coincides with an increase in OTR mRNA expression in the luminal epithelial cells, suggesting the likely production of an intermediary messenger between the epithelial and smooth muscle cells.  相似文献   

16.
To study joint contributions in manual wheelchair propulsion, we developed a three-dimensional model of the upper extremity. The model was applied to data collected in an experiment on a wheelchair ergometer in which mechanical advantage (MA) was manipulated. Five male able-bodied subjects performed two wheelchair exercise tests (external power output Pext = 0.25–0.50 W · kg−1) against increasing speeds (1.11–1.39–1.67 m.s−1), which simulated MA of 0.58–0.87. Results indicated a decrease in mechanical efficiency (ME) with increasing MA that could not be related to applied forces or joint torques. Increase in Pext was related to increases in joint torques. On the average, the highest torques were noted in shoulder flexion and adduction (35.6 and 24.6 N · m at MA = 0.58 and Pext= 0.50 W · kg−1). Peak elbow extension and flexion torques were −10.6 and 8.5 N · m. Based on the combination of torques and electromyographic (EMG) records of upper extremity muscles, anterior deltoid and pectoralis muscles are considered the prime movers in manual wheelchair propulsion. Coordinative aspects of manual wheelchair propulsion concerning the function of (biarticular) muscles in directing the propulsive forces and the redistribution of joint torques in a closed chain are discussed. We found no conclusive evidence for the role of elbow extensors in direction of propulsive forces.  相似文献   

17.
We present a technique to combine muscle shortening and lengthening velocity information with electromyographic (EMG) profiles during gait. A biomechanical model was developed so that each muscle's length could be readily calculated over time as a function of angles of the joints it crossed. The velocity of shortening and lengthening of the muscle fiber was then calculated, and with computer graphics this information was overlaid on the EMG profiles. Thus, researchers and clinicians were not only able to interpret the processed EMG signal as level of activity (tension) but also to gain insight as to the muscles' role as generators (muscle shortening) or absorbers (muscle lengthening) of energy. Six common muscles are documented, using database profiles; soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF), and semitendinosus (ST). The protocol thus demonstrates a relatively simple technique for calculating muscle fiber velocity and for combining that velocity information with EMG activity profiles.  相似文献   

18.
Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles5. The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction*force interaction, ANOVA, P<0.05) and MF (contraction*force interaction, ANOVA, P>0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle.  相似文献   

19.
Appropriate reliability is a necessary condition for the use of surface EMG for evaluation of hamstring muscle function in cases of knee joint pathologies or ligament injuries. The aim of the study was to investigate the test-retest reliability of power spectrum and amplitude of surface electromyographic (EMG) measurements of semitendinosus (ST) and biceps femoris (BF) during ramp isometric contractions. Eleven males performed maximum isometric contractions (MVC) of the knee flexors in two sessions, a week apart with simultaneous recording of surface EMG of the BF and ST. Intra class correlation (ICC) and standard error measurements (SEM) were applied to assess test-retest reliability of the averaged EMG (aEMG) and the median frequency (MF) over 10 levels of force, from 0% to 100% of the maximum. The ICC values ranged from 0.38 to 0.96 for the aEMG with SEM values reaching 11.37% of MVC. For the MF, the ICCs ranged from 0.44 to 0.98 (SEM range 4.49–18.19 Hz). In our set up, ramp contractions can be used to examine hamstring EMG patterns with acceptable reliability.  相似文献   

20.
Ten females (25–50 years of age) performed isometric shoulder flexions, holding the right arm straight and in a horizontal position. The subjects were able to see the rectified surface electromyogram (EMG) from either one of two electrode pairs above the upper trapezius muscle and were instructed to keep its amplitude constant for 15 min while gradually unloading the arm against a support. The EMG electrodes were placed at positions representing a “cranial” and a “caudal” region of the muscle suggested previously to possess different functional properties. During the two contractions, recordings were made of: (1) EMG root mean square-amplitude and zero crossing (ZC) frequency from both electrode pairs on the trapezius as well as from the anterior part of the deltoideus, (2) supportive force, (3) heart rate (HR) and mean arterial blood pressure (MAP), and (4) perceived fatigue. The median responses during the cranial isoelectric contraction were small as compared to those reported previously in the literature: changes in exerted glenohumeral torque and ZC rate of the isoelectric EMG signal of −2.81% · min−1 (P = 0.003) and 0.03% · min−1 (P= 0.54), respectively, and increases in HR and MAP of 0.14 beats · min−2 (P= 0.10) and 0.06 mmHg · min−1 (P= 0.33), respectively. During the contraction with constant caudal EMG amplitude, the corresponding median responses were −2.51% · min−1 (torque), 0.01% · min−1 (ZC rate), 0.31 beats · min−2 (HR), and 0.93 mmHg · min−1 (MAP); P=0.001, 0.69, 0.005, and 0.003, respectively. Considerable deviations from the “isoelectric” target amplitude were common for both contractions. Individuals differed markedly in response, and three distinct subgroups of subjects were identified using cluster analysis. These groups are suggested to represent different motor control scenarios, including differential engagement of subdivisions of the upper trapezius, alternating motor unit recruitment and, in one group, a gradual transition towards a greater involvement of type II motor units. The results indicate that prolonged low-level contractions of the shoulder muscles may in general be accomplished with a moderate metabolic stress, but also that neuromuscular adaptation strategies differ significantly between individuals. These results may help to explain why occupational shoulder-neck loads of long duration cause musculoskeletal disorders in some subjects but not in others. Accepted: 1 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号