首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The yeast artificial chromosome (YAC) system (Burke et al., 1987, Science 236: 806-812) allows the direct cloning of large regions of the genome. A YAC contig map of approximately 700 kb encompassing the region surrounding the type 1 neurofibromatosis (NF1) locus on 17q11.2 has been constructed. A single YAC containing the entire NF1 locus has been constructed by homologous recombination in yeast. In the process of contig construction a novel method of YAC end rescue has been developed by YAC circularization in yeast and plasmid rescue in bacteria. YACs containing homology to the NF1 region but mapping to another chromosome have also been discovered. Sequences of portions of the homologous locus indicate that this other locus is a nonprocessed pseudogene.  相似文献   

2.
3.
Mogayzel PJ  Ashlock MA 《Genomics》2000,64(2):211-215
The DNA elements that account for the highly regulated expression of the cystic fibrosis transmembrane conductance regulator gene (CFTR) are poorly understood. The goal of this study was to assess the feasibility of using a yeast artificial chromosome (YAC)-based reporter gene construct to define these elements further. An approximately 350-kb YAC (y5'luc) was constructed by replacing CFTR with a luciferase reporter gene (luc). A second YAC (y5'lucI) was similarly constructed but included a putative positive regulatory element from CFTR intron 1. Stable Chinese hamster ovary (CHO-K1) cell clones were derived using each YAC to assess the role that luc copy number and the presence of intron 1 played in luc expression. The CHO-K1 clonal cell lines demonstrated a wide range of luciferase activity. On average, this activity was significantly higher in clones derived from y5'lucI. After correcting for luc copy number, the presence of intron 1 was still associated with an increase in luciferase activity (P < 0.05), despite the fact that luciferase activity did not correlate with luc copy number in y5'luc-derived clones (r = -0.12). In contrast, the luciferase activity correlated well with luc copy number in the clones derived from y5'luc (r = 0. 75). These data are consistent with a positive role for intron 1 in regulating CFTR expression, but suggest that copy number is not the only factor that determines expression levels, particularly when this element is present. This YAC-based reporter system will provide a unique strategy for further assessment of the cis-acting elements that control CFTR expression.  相似文献   

4.
5.
The anti-Müllerian hormone gene (Amh) is responsible for regression in males of the Müllerian ducts. The molecular mechanism of regulation of chicken Amh expression is poorly understood. To investigate the regulation of chicken Amh expression, we have cloned Amh cDNAs from quail and duck as well as the promoter regions of the gene from chicken, quail, and duck. The expression patterns of Amh during embryonic development in these three species were found to be similar, suggesting that the regulatory mechanisms of Amh expression are conserved. The sequence of the proximal promoter of Amh contains a putative binding site for steroidogenic factor 1 (SF1), the protein product of which can up-regulate Amh in mammals. We showed here that SF1 is able to activate the chicken Amh promoter and binds to its putative SF1 binding site. These results suggest that SF1 plays a role in regulation of Amh expression in avian species.  相似文献   

6.
The development of YAC cloning technology has directly enhanced the relationship among genetic, physical, and functional mapping of genomes. Because of their large size, YACs have enabled the rapid construction of physical maps by ordered clone mapping and contig building, and they complement other molecular approaches for mapping complex genomes. Large insert libraries are constructted by size fractionating large DNA embedded in agarose and protecting DNA from degradation with polyamines.  相似文献   

7.
The gene responsible for cystic fibrosis (CF) has recently been identified. Coding sequence for the cystic fibrosis transmembrane conductance regulator (CFTR) spans at least 230 kb of the human genome. Although all 27 exons of the gene are represented in cosmid or bacteriophage clones, there are still several gaps in the physical map of this region. It should be possible to complete the map and to clone the entire CFTR gene in a single fragment of DNA using a yeast artificial chromosome (YAC) vector. Herein we describe the construction and physical mapping of a 1.5-Mb YAC contig which encompasses D7S8 (J3.11) and D7S23 (KM19), two genetic loci flanking the CF locus. One of the clones in the contig, 37AB12, contains a 310-kb YAC which includes the entire CFTR gene and flanking sequence in both the 5' and 3' directions.  相似文献   

8.
Hexokinase 1 (HK1) is one of four mammalian HK isoenzymes and maps to human chromosome 10. Two yeast artificial chromosomes (YACs) were identified in the Washington University human YAC library using polymerase chain reaction (PCR) primers designed with knowledge of the human HK1 cDNA sequence. YAC B129B12 is 120 kb in length and maps entirely to chromosome 10. YAC A159D5 is 400 kb in length and appears to have resulted from a recombination of chromosome 10 with non-chromosome 10 material. We report these YACs as potential resources for those interested in HK1 gene organization and mapping, as well as those desiring additional genomic information and markers on chromosome 10.  相似文献   

9.
We describe methods for rapid production and screening of yeast artificial chromosome (YAC) libraries. Utilizing complete restriction digests of mouse genomic DNA for ligations in agarose, a 32,000-clone library was produced and screened in seven weeks. Screening was accomplished by subdividing primary transformation plates into pools of approximately 100 clones which were transferred into a master glycerol stock. These master stocks were used to inoculate liquid cultures to produce culture pools, and ten pools of 100 clones were then combined to yield superpools of 1,000 clones. Both pool and superpool DNA was screened by polymerase chain reaction (PCR) and positive pools representing 100 clones were then plated on selective medium and screened by in situ hybridization. Screening by the two tiered PCR assay and by in situ hybridization was completed in 4–5 days. Utilizing this methodology we have isolated a 150 kb clone spanning the 1(I) collagen (Colla1) gene as well as 40 kb clones from the Hox-2 locus. To characterize the representation of the YAC library, the size distribution of genomic Sal I fragments was compared to that of clones picked at random from the library. The results demonstrate significant biasing of the cloned fragment distribution, resulting in a loss of representation for larger fragments.  相似文献   

10.
Chromosome 21 contains genes relevant to several important diseases. Yeast artificial chromosome (YAC) clones, because they span > 100 kbp, will provide attractive material for initiating searches for such genes. Twenty-two YAC clones, each of which maps to a region of potential relevance either to aspects of the Down syndrome phenotype or to one of the other chromosome 21-associated genetic diseases, have been analyzed in detail. Clones total approximately 6,000 kb and derive from all parts of the long arm. Rare restriction-site maps have been constructed for each clone and have been used to determine regional variations in clonability, methylation frequency, CpG island density, and CpG island frequency versus gene density. This information will be useful for the isolation and mapping of new genes to chromosome 21 and for walking in YAC libraries.  相似文献   

11.
Two Yeast Artificial Chromosomes (YACs) were isolated each with a full-length copy of the human gene that encodes the trifunctional protein containing phosphoribosylglycinamide synthetase (GARS), phosphoribosylglycinamide formyltransferase (GART) and phosphoribosylaminoimidazole synthetase (AIRS). The YACs were characterized by restriction mapping and by in situ hybridization of cosmid subclones containing the YAC ends to human metaphase chromosomes. One of the YACs contains co-cloned non-contiguous DNA whereas the other appears to have a single 600 kbp insert from 21q22.1, the location of the GART gene. A restriction map of the gene was obtained from two cosmid subclones which together span the 40 kb gene. The gene is functional when YAC DNA is transferred into GARS- or GARS-and-AIRS-deficient Chinese Hamster Ovary cells. The gene transfer was carried out both by lipofection using purified yeast DNA and by fusion between yeast spheroplasts and the hamster cells. Restriction analysis of DNA from cell lines whose purine auxotrophy was complemented by the YAC showed that with either method a complete and unrearranged copy of the gene can be transferred. The majority of the fusion cell lines appear to contain at least 80% of the YAC.  相似文献   

12.
The steroidogenic acute regulatory protein (StAR) stimulates the regulated production of steroid hormones in the adrenal cortex and gonads by facilitating the delivery of cholesterol to the inner mitochondrial membrane. To explore key aspects of StAR function within bona fide steroidogenic cells, we used a transgenic mouse model to explore the function of StAR proteins in vivo. We first validated this transgenic bacterial artificial chromosome reconstitution system by targeting enhanced green fluorescent protein to steroidogenic cells of the adrenal cortex and gonads. Thereafter, we targeted expression of either wild-type StAR (WT-StAR) or a mutated StAR protein lacking the mitochondrial targeting signal (N47-StAR). In the context of mice homozygous for a StAR knockout allele (StAR-/-), all StAR activity derived from the StAR transgenes, allowing us to examine the function of the proteins that they encode. The WT-StAR transgene consistently restored viability and steroidogenic function to StAR-/- mice. Although the N47-StAR protein was reportedly active in transfected COS cells and mitochondrial reconstitution experiments, the N47-StAR transgene rescued viability in only 40% of StAR-/- mice. Analysis of lipid deposits in the primary steroidogenic tissues revealed a hierarchy of StAR function provided by N47-StAR: florid lipid deposits were seen in the adrenal cortex and ovarian theca region, with milder deposits in the Leydig cells. Our results confirm the ability of StAR lacking its mitochondrial targeting signal to perform some essential functions in vivo but also demonstrate important functional defects that differ from in vitro studies obtained in nonsteroidogenic cells.  相似文献   

13.
The introduction of high molecular weight DNA into mammalian cells is useful for gene expression studies. However, current transfection strategies are inefficient, necessitating propagation of stable DNA transformants prior to analysis of gene expression. Here we demonstrate that transient lipid-mediated DNA transfection can be used to assess gene expression from yeast artificial chromosomes (YACs) containing the 230 kb cystic fibrosis transmembrane conductance regulator gene ( CFTR ) and Escherichia coli lacZ . We also show that psoralen-UV inactivated adenovirus significantly enhances transfection efficiency. The ability to deliver high molecular weight DNA using lipid-mediated transfection should expedite the analysis of large human genes contained within artificial chromosome vectors.  相似文献   

14.
Three yeast artificial chromosome (YAC) libraries were constructed using two human cell lines and the pYAC-RC vector. The main differences from the previously described methods were: i) genomic DNA was digested in low melting point (LMP) agarose blocks with the rare cutting enzyme ClaI; ii) DNA was ligated in melted LMP agarose after agarase treatment; iii) spheroplast regeneration plating was done in calcium alginate thin layer. In addition, a panel of PCR primers was used to identify quickly the presence in the libraries of repetitive and single copy human DNA sequences.  相似文献   

15.
Isolation of cDNA clones using yeast artificial chromosome probes.   总被引:13,自引:3,他引:13       下载免费PDF全文
The cloning of large DNA fragments of hundreds of kilobases in Yeast artificial chromosomes, has simplified the analysis of regions of the genome previously cloned by cosmid walking. The mapping of expressed sequences within cosmid contigs has relied on the association of genes with sequence motifs defined by rare-cutting endonucleases, and the identification of sequence conservation between species. We reasoned that if the contribution of repetitive sequences to filter hybridizations could be minimised, then the use of large cloned DNAs as hybridisation probes to screen cDNA libraries would greatly simplify the characterisation of hitherto unidentified genes. In this paper we demonstrate the use of this approach by using a YAC, containing 180 kb of human genomic DNA including the aldose reductase gene, as a probe to isolate an aldose reductase cDNA from a lambda gt11 human foetal liver cDNA library.  相似文献   

16.
Yeast artificial chromosome (YAC) libraries have been constructed from a variety of organisms using different approaches. This protocol outlines in detail the construction of YAC libraries with large inserts using size fractionation of partially digested DNA by pulsed-field gel electrophoresis.  相似文献   

17.
《Gene》1998,210(1):163-172
This report describes the construction of a new yeast artificial chromosome (YAC) vector designed for gene transfer into mammalian cells. For ease of use, the two arms of the vector were cloned separately. The vector harbours the Neo and Hyg genes for dominant selection in mammalian cells, a putative human origin of replication, a synthetic matrix attachment region and two loxP sites (one on each arm). The cloning ability of the vector was demonstrated by successful propagation of the cDNA of the cystic fibrosis gene, CFTR, as a YAC in Saccharomyces cerevisiae. A YAC containing the entire CFTR gene was also constructed by retrofitting the two arms of a pre-existing clone (37AB12) with the two arms of the novel vector. Both the cDNA and entire gene containing YACs were circularized in yeast by inducible expression of the Cre recombinase. Recombination occurred very specifically at the loxP sequences present on the two arms of the YAC. Applications of the vector to gene transfer are discussed.  相似文献   

18.
 A single contig spanning the entire mouse immunoglobulin kappa light chain (Igk) locus on chromosome 6 has been established using yeast and bacterial artificial chromosome clones. Detailed mapping of the Igk locus indicates that a member of the Igk-V2 gene family, located about 3.5 megabases upstream of the Igk-J-C complex, is the most distal functional Igk-V gene. Sequence analyses of Igk-V genes and anonymous DNA segments provide indications for internal duplications at the 5′ end of the Igk-V locus and identify the likely origin of Igk-V orphon gene clusters located elsewhere in the mouse genome. Received: 17 July 1996 / Revised: 2 September 1996  相似文献   

19.
A contig of 36 overlapping yeast artificial chromosome (YAC) clones has been constructed for the complete Duchenne muscular dystrophy (DMD) gene in Xp21. The YACs were isolated from a human 48,XXXX YAC library using the DMD cDNA and brain promoter fragments as hybridization probes. The YAC clones were characterized for exon content using HindIII or EcoRI digests, hybridization of individual DMD cDNA probes, and polymerase chain reaction (PCR) amplification of specific exons near the 5' end of the gene. For comparison to the known long-range restriction map of the DMD gene, YAC clones were digested with SfiI and hybridized with DMD cDNA probes. The combined analysis of the exon content and the SfiI map allowed an approximately 3.2-Mb YAC contig to be constructed. The complete 2.4-Mb DMD gene could be represented in a minimum set of 7 overlapping YAC clones.  相似文献   

20.
Human artificial chromosome (HAC) vectors are an important gene transfer system for expression and complementation studies. We describe a significant advance in HAC technology using infectious herpes simplex virus type 1 (HSV-1) amplicon vectors for delivery. This highly efficient method has allowed gene-expressing HACs to be established in glioma-, kidney- and lung-derived cells. We also developed an HSV-1 hypoxanthine phosphoribosyltransferase (HPRT) HAC vector, which generated functional HPRT-expressing HACs that complemented the genetic deficiency in human cells. The transduction efficiency of the HSV-1 HAC amplicons is several orders of magnitude higher than lipofection-mediated delivery. Studies on HAC stability between cell types showed important differences that have implications for HAC development and gene expression in human cells. This is the first report of establishing gene-expressing HACs in human cells by using an efficient, high-capacity viral vector and by identifying factors that are involved in cell-type-specific HAC instability. The work is a significant advance for HAC technology and the development of HAC gene expression systems in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号