首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
L-DOPA is the most commonly used treatment for symptomatic control in patients with Parkinson's disease. Unfortunately, most patients develop severe side-effects, such as dyskinesia, upon chronic l-DOPA treatment. The patophysiology of dyskinesia is unclear; however, involvement of serotonergic nerve fibers in converting l-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of l-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned l-DOPA na?ve, and dopamine-denervated chronically l-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local l-DOPA administration into normal and intact hemisphere of dopamine-lesioned l-DOPA na?ve animals significantly increased the potassium-evoked dopamine release. l-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted l-DOPA na?ve striatum, although these dopamine levels were several-folds lower than in the normal striatum, whereas no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local l-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared with those measured in l-DOPA na?ve dopamine-denervated striatum. To conclude, l-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, l-DOPA loading does not increase the dopamine release in dyskinetic animals as found in l-DOPA na?ve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior.  相似文献   

2.
Insulin affects brain reward pathways and there is converging evidence that this occurs through insulin regulation of the dopamine (DA) transporter (DAT). In rats made hypoinsulinemic by fasting, synaptosomal DA uptake is reduced. Interestingly, [3H]DA uptake is increased in hypoinsulinemic rats with a history of amphetamine self-administration. The possibility that amphetamine and insulin act in concert to regulate DAT activity prompted this study. Here we show that [3H]DA uptake, measured in vitro and clearance of exogenously applied DA in vivo, is significantly reduced in rats made hypoinsulinemic by a single injection of streptozotocin. Strikingly, amphetamine (1.78 mg/kg, given every other day for 8 days) restored DA clearance in streptozotocin-treated rats but was without effect on DA clearance in saline-treated rats. Basal locomotor activity of streptozotocin-treated rats was lower compared to control rats; however, in streptozotocin-treated rats, hyperlocomotion induced by amphetamine increased over successive amphetamine injections. In saline-treated rats the locomotor stimulant effect of amphetamine remained stable across the four amphetamine injections. These results provide exciting new evidence that actions of amphetamine on DA neurotransmission are insulin-dependent and further suggest that exposure to amphetamine may cause long-lasting changes in DAT function.  相似文献   

3.
Iron deficiency (ID) disrupts brain dopamine (DA) and norepinephrine (NE) metabolism including functioning of monoamine transporters and receptors. We employed caudate microdialysis and no net flux (NNF) in post-weaning rats to determine if ID decreased the extraction fraction ( E d). Five micromolar quinpirole, a dopamine D2 receptor agonist, resulted in 80% decrease in extracellular DA and 45% higher E d in control animals. The D2 agonist had no effect on E d in ID animals despite a reduction in basal DA. DAT mRNA levels were reduced by 58% with ID, while DAT protein in ventral midbrain and caudate and membrane associated DAT were also reduced by ID. Carbidopa/ l -DOPA was administered to determine if elevated extracellular DA in ID was due to increased release. The DA response to l -DOPA in ID rats was 50% smaller and delayed, whereas the NE response was threefold higher. The caudate concentration of NE was also elevated in ID. Elevated dopamine-β-hydroxylase activity in ID provides a tentative explanation for the increased NE response to l -DOPA. These experiments provide new evidence that ID results in altered synthesis and functioning of DAT and perhaps suggests some compensatory changes in NE metabolism.  相似文献   

4.
Cannabinoid drugs are known to affect dopaminergic neurotransmission in the basal ganglia circuitry. In this study, we used in vitro and in vivo techniques to investigate whether cannabinoid agonists and antagonist could affect dopaminergic transmission in the striatum by acting at the dopamine transporter. Incubation of striatal synaptosomes with the cannabinoid agonists WIN55,212-2 or methanandamide decreased dopamine uptake (IC(50) = 2.0 micromol/L and 3.1 micromol/L, respectively). A similar inhibitory effect was observed after application of the inactive WIN55,212-2 isomer, S(-)WIN55,212-3. The CB(1) antagonist AM251 did not reverse WIN55,212-2 effect but rather mimicked it. WIN55,212-2 and AM251 partially displaced the binding of the cocaine analog [(3)H]WIN35,428, thus acting as dopamine transporter pseudo-substrates in the high micromolar range. High-speed chronoamperometry measurements showed that WIN55,212-2 (4 mg/kg, i.p.) caused significant release of endogenous dopamine via activation of CB(1) receptors, followed by a reduction of dopamine clearance. This reduction was CB(1)-independent, as it was mimicked by S(-)WIN55,212-3. Administration of AM251 (1 and 4 mg/kg, i.p.) increased the signal amplitude and reduced the clearance of dopamine pressure ejected into the striatum. These results indicate that both cannabinoid agonists and antagonists inhibit dopamine transporter activity via molecular targets other than CB(1) receptors.  相似文献   

5.
The potassium-stimulated release of acetylcholine (ACh), glutamate (GLU) and dopamine (DA) from mouse striatal slices was studied during anoxia and/or 3,4-diaminopyridine (DAP) treatment. Anoxia, in the presence of calcium, increased DA and GLU release, but depressed ACh release. Omission of calcium from an anoxic incubation further stimulated GLU and DA release and impaired ACh release. Under normoxic conditions, DAP (100 M) increased the release of all three neurotransmitters; the sensitivity of the slices to DAP changed with the presence or absence of an acetylcholinesterase inhibitor in the preincubation media. During an anoxic incubation, DAP did not ameliorate the anoxic-induced, K+-stimulated impairment of ACh release, but significantly reduced the K+-stimulated release of GLU and DA. These results are consistent with the hypothesis that hypoxia induces a presynaptic deficit that may underlie postsynaptic ischemic-induced changes. Amelioration of these presynaptic alterations in neurotransmitter release may be an effective approach to preventing hypoxic-induced damage.  相似文献   

6.
Parkin is the most common causative gene of juvenile and early-onset familial Parkinson's diseases and is thought to function as an E3 ubiquitin ligase in the ubiquitin-proteasome system. However, it remains unclear how loss of Parkin protein causes dopaminergic dysfunction and nigral neurodegeneration. To investigate the pathogenic mechanism underlying these mutations, we used parkin −/− mice to study its physiological function in the nigrostriatal circuit. Amperometric recordings showed decreases in evoked dopamine release in acute striatal slices of parkin −/− mice and reductions in the total catecholamine release and quantal size in dissociated chromaffin cells derived from parkin −/− mice. Intracellular recordings of striatal medium spiny neurons revealed impairments of long-term depression and long-term potentiation in parkin −/− mice, whereas long-term potentiation was normal in the Schaeffer collateral pathway of the hippocampus. Levels of dopamine receptors and dopamine transporters were normal in the parkin −/− striatum. These results indicate that Parkin is involved in the regulation of evoked dopamine release and striatal synaptic plasticity in the nigrostriatal pathway, and suggest that impairment in evoked dopamine release may represent a common pathophysiological change in recessive parkinsonism.  相似文献   

7.
Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex.  相似文献   

8.
The concentrations of dopamine (DA), 5-hydroxytryptamine (5-HT) and noradrenaline (NA) in the rat vas deferens divided in eight or four sections were determined by high performance liquid chromatography with electrochemical detection. Dopamine and NA had the same regional distribution; their concentrations were maximal near the prostatic end and decreased towards the epididymis. The concentration of 5-HT also decreased from the prostatic to the epididimal end, but 5-HT did not follow the same regional distribution as DA and NA. Reserpine (0.02 or 0.2 mg/kg, i.p., 24 hr) and 6-hydroxydopamine (2×80 mg/kg, i.v., 6 days) decreased the contents of DA and NA; the concentrations of both amines were modified to a similar extent. Reserpine also diminished the content of 5-HT. Pargyline (200 mg/kg, i.p., 2 hr) increased the concentration of 5-HT whilep-chlorophenylalanine (300 mg/kg, oral, 3 days) decreased the contents of the amine in some sections of the vas deferens. This study suggests that DA and NA co-exist in the same sympathetic neurons. Some of the 5-HT could be stored in mast cells as previously proposed, but the finding that tissue content of 5-HT changes after inhibiting the deamination or synthesis of the amine suggests that other source(s) of 5-HT distinct from mast cells exist in the rat vas deferens.  相似文献   

9.
Dopamine (DA) replacement therapy continues to be the gold standard treatment for Parkinson's disease (PD), as it improves key motor symptoms including bradykinesia and gait disturbances. With time, treatment induces side effects in the majority of patients, known as L‐DOPA‐induced dyskinesia (LID), which are often studied in animals by the use of unilateral, toxin‐induced rodent models. In this study, we used the progressive, genetic PD model MitoPark to specifically evaluate bilateral changes in motor behavior following long‐term L‐DOPA treatment at three different stages of striatal DA depletion. Besides locomotor activity, we assessed changes in gait with two automated gait analysis systems and the development of dyskinetic behavior. Long‐term treatment with a moderate, clinically relevant dose of L‐DOPA (8 mg/kg) gradually produced age‐dependent hyperactivity in MitoPark mice. In voluntary and forced gait analyses, we show that MitoPark mice with severe DA depletion have distinct gait characteristics, which are normalized to control levels following long‐term L‐DOPA treatment. The cylinder test showed an age‐dependent and gradual development of bilateral LID. Significant increase in striatal FosB and prodynorphin expression was found to accompany the behavior changes. Taken together, we report that MitoPark mice model both behavioral and biochemical characteristics of long‐term L‐DOPA treatment in PD patients and provide a novel, consistent and progressive animal model of dyskinesia to aid in the discovery and evaluation of better treatment options to counteract LID.  相似文献   

10.
Traumatic brain injury features deficits are often ameliorated by dopamine (DA) agonists. We have previously shown deficits in striatal DA neurotransmission using fast scan cyclic voltammetry after controlled cortical impact (CCI) injury that are reversed after daily treatment with the DA uptake inhibitor methylphenidate (MPH). The goal of this study was to determine how a single dose of MPH (5 mg/kg) induces changes in basal DA and metabolite levels and with electrically evoked overflow (EO) DA in the striatum of CCI rats. MPH-induced changes in EO DA after a 2-week daily pre-treatment regime with MPH was also assessed. There were no baseline differences in basal DA or metabolite levels. MPH injection significantly increased basal [DA] output in dialysates for control but not injured rats. Also, MPH injection increased striatal peak EO [DA] to a lesser degree in CCI (176% of baseline) versus control rats (233% of baseline). However, daily pre-treatment with MPH resulted in CCI rats having a comparable increase in EO [DA] after MPH injection when compared with controls. The findings further support the concept that daily MPH therapy restores striatal DA neurotransmission after CCI.  相似文献   

11.
Temporal phase relations of circadian hypothalamic neurotransmitters are reported to regulate seasonal reproduction in some avian species. Present experiments were designed to study circadian variation in the hypothalamic concentration of neurotransmitters (serotonin and dopamine) and the plasma thyroxine level in sexually active (long day) and inactive (short day) Japanese Quail. A significant circadian cycle was noted in the hypothalamic content of both serotonin and dopamine, but with different patterns. In breeding Quail, peak activity of serotonin and dopamine was noted at 10.00 A.M. and 10.00 P.M. respectively i.e. at the interval of 12 hours. However, during sexually quiescent condition, peaks of both neurotransmitters occurred at 2.00 P.M. i.e. having a 0-hour temporal relationship. During the breeding phase, the plasma thyroxine level showed a biphasic pattern with two circadian peaks at 10.00 A.M. and 10.00 P.M. whereas in the non-breeding condition a single peak was observed at 10.00 A.M. In the second experiment, to study the effect of temporal synergism of neurotransmitter precursor drugs on circadian cycles, two groups of Quail were administered daily with serotonin precursor 5-HTP (5-hydroxytryptophan) and dopamine precursor L-DOPA (L-dihydroxyphenylalanine) (5 mg/100 g body weight) 12 hour (12-hr) and 8 hour (8-hr) apart over a period of 11 days under continuous conditions of light and then transferred to long day length for 15 days when the experiment was terminated. When compared to controls, the 12-hr condition induced breeding while the 8-hr condition led to a non-breeding condition. The circadian pattern of serotonin levels of control and 12-hr Quail was similar to that of a normal sexually active bird, while that of the 8-hr Quail showed the pattern of a sexually inactive bird. The plasma thyroxine level exhibited a biphasic pattern in 12-hr Quail, which was similar to a normally breeding bird, whereas unlike sexually inactive birds, the thyroxine concentration in 8-hr Quail was relatively low and did not show significant cyclicity. Interestingly, the plasma testosterone level of 12-hr Quail followed a more or less similar pattern with peak activities coinciding with that of thyroxine i.e. biphasic in the sexually active condition (12-hr and control) but a single peak in the quiescent (8-hr) condition. These findings suggest that the temporal phase relation of circadian serotonergic and dopaminergic oscillator varies as a function of reproductive status of the bird, and breeding/non-breeding conditions may be induced experimentally by changing the phase relation of these oscillations.  相似文献   

12.
The monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT) facilitate the homeostatic balance of neurotransmitters in the synaptic cleft and thus, play a fundamental role in regulating neuronal activity. Despite the importance of these monoamine transporters in controlling brain function, only relatively little information is available regarding the cellular and molecular regulation of these proteins. The monoamine transporters have been found to associate with a number of different proteins that regulate the function and subcellular localization of the transporters. We recently reported a functional interaction between SERT and the Secretory Carrier Membrane Protein 2 (SCAMP2). Here, we demonstrate that SCAMP2 also plays a role in the functional regulation of DAT. DAT and SCAMP2 interaction is here verified by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) microscopy. Moreover, co-expression of DAT and SCAMP2 results in a decrease in DAT-mediated dopamine uptake caused by reduced levels of DAT molecules on the cell surface. Our finding that SCAMP2 interacts with and regulates the subcellular distribution of both DAT and SERT suggests that interaction with SCAMP2 may constitute an important mechanism for coordinating cell surface expression of monoamine transporters.  相似文献   

13.
Rats treated with (±)-3,4-methylenedioxymethamphetamine (MDMA) or (+)-methamphetamine (MA) neonatally exhibit long-lasting learning impairments (i.e., after treatment on postnatal days (P)11–15 or P11–20). Although both drugs are substituted amphetamines, they each produce a unique profile of cognitive deficits (i.e., spatial vs. path integration learning and severity of deficits) which may be the result of differential early neurochemical changes. We previously showed that MA and MDMA increase corticosterone (CORT) and MDMA reduces levels of serotonin (5-HT) 24 h after treatment on P11, however, learning deficits are seen after 5 or 10 days of drug treatment, not just 1 day. Accordingly, in the present experiment, rats were treated with MA or MDMA starting on P11 for 5 or 10 days (P11–15 or P11–20) and tissues collected on P16, P21, or P30. Five-day MA administration dramatically increased CORT on P16, whereas MDMA did not. Both drugs decreased hippocampal 5-HT on P16 and P21, although MDMA produced larger reductions. Ten-day treatment with either drug increased dopamine utilization in the neostriatum on P21, whereas 5-day treatment had no effect. No CORT or brain 5-HT or dopamine changes were found with either drug on P30. Although the monoamine changes are transient, they may alter developing neural circuits sufficiently to permanently disrupt later learning and memory abilities.  相似文献   

14.
The effects of microinfusingl-glutamate, serotonin (5-HT), (±)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH DPAT; a 5-HT1A agonist), and muscimol (a GABAA agonist) into the dorsal raphe nucleus on the extracellular levels of 5-HT, dopamine (DA) and their metabolites in the nucleus accumbens were studied in unanesthetized, freely moving, adult male Wistar rats, using the technique of microdialysis coupled with small-bore HPLC. Administration of 0.75 gl-glutamate produced a 25–50% increase (P<0.05) in the extracellular levels of both 5-HT and DA. On the other hand, infusion of 8-OH DPAT and, to a lesser extent, 5-HT produced a significant (P<0.05) decrease in the extracellular levels of both 5-HT and DA. Muscimol (0.25 or 0.50 g) had little effect on the extracellular concentrations of 5-HT or DA following its administration. In general, the extracellular levels of the major metabolites of 5-HT and DA in the nucleus accumbens were not altered by microinfusion of any of the agents. The data indicate that (a) the 5-HT neurons projecting to the nucleus accumbens from the dorsal raphe nucleus can be activated by excitatory amino acid receptors and inhibited by stimulation of 5-HT1A autoreceptors, and (b) the dorsal raphe nucleus 5-HT neuronal system may regulate the ventral tegmental area DA projection to the nucleus accumbens.Special issue dedicated to Dr. Morris H. Aprison  相似文献   

15.
Because age-related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post-mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2- to 3-fold) post-natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post-natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic post-natal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA-related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.  相似文献   

16.
17.
In the present report, fast-scan cyclic voltammetry was used to identify the monoamines that were released by electrical stimulation in mouse brain slices containing ventral tegmental area (VTA), substantia nigra (SN) -pars compacta (SNc) and -pars reticulata (SNr). We showed that voltammograms obtained in mouse VTA were consistent with detection of a catecholamine, while those in both subregions of the SN were consistent with detection of an indolamine, based on the reduction peak potentials. We used pharmacological blockade and genetic deletion of monoamine transporters to further confirm the identity of released monoamines in mouse midbrain and to assess the control of monoamines by their transporters in each brain region. Inhibition of dopamine and norepinephrine transporters by nomifensine (1 and 10 microm) decreased uptake rates in the VTA, but did not change uptake rates in either subregion of the SN. Serotonin transporter inhibition by fluoxetine (10 microm) decreased uptake rates in the SNc and SNr, but was without effect in the VTA. Selective inhibition of the norepinephrine transporter by desipramine (10 microm) had no effect in any brain region. Using dopamine transporter- and serotonin transporter-knockout mice, we found decreased uptake rates in VTA and SN subregions, respectively. Peak signals recorded in each midbrain region were pulse number dependent and exhibited limited frequency dependence. Thus, dopamine is predominately detected by voltammetry in mouse VTA, while serotonin is predominately detected in mouse SNc and SNr. Furthermore, active uptake occurs in these areas and can be altered only by specific uptake inhibitors, suggesting a lack of heterologous uptake. In addition, somatodendritic dopamine release in VTA was not mediated by monoamine transporters. This work offers an initial characterization of voltammetric signals in the midbrain of the mouse and provides insight into the regulation of monoamine neurotransmission in these areas.  相似文献   

18.
Crustacean hyperglycemic hormone (CHH), a neurohormone synthesized and released from the x-organ sinus gland complex, is primarily involved in carbohydrate metabolism; biogenic amines and peptidergic neuroregulators are known to modulate the release of CHH. Marked elevations of hemolymph glucose titers, which peaked within 2 h, were observed in both intact and bilaterally eyestalk-ablated prawns, Macrobrachium rosenbergii, when they were transferred directly from their optimal temperature of 28 °C to lower temperatures close to their lethal limit. Hyperglycemia can therefore be considered a characteristic response in this species under cold shock. Involvement of biogenic amines in the hyperglycemic response was also demonstrated. Hyperglycemic effects of epinephrine, dopamine and serotonin were mediated through CHH at the eyestalk level, but the response under cold shock was not exclusively mediated through CHH. It is suggested that factor(s) other than CHH are involved in the hyperglycemic response, possibly norepinephrine or/and octopamine. Accepted: 24 October 1998  相似文献   

19.
This research was initiated to assess the turnover rates (TORs) of dopamine (DA), norepinephrine (NA), serotonin (5-HT), aspartate, glutamate, and GABA in brain regions during rodent ethanol/sucrose (EtOH) and sucrose (SUC) drinking and in animals with a history of EtOH or SUC drinking to further characterize the neuronal systems that underlie compulsive consumption. Groups of five male rats were used, with two trained to drink EtOH solutions, two to drink SUC and one to serve as a non-drinking control. When stable drinking patterns were obtained, rats were pulse labeled intravenously and killed 60 or 90 min later and the TORs of DA, norepinephrine, 5-HT, aspartate, glutamate, and GABA determined in brain regions. Changes in the TOR of 5-HT, DA, and NA were detected specific to EtOH drinking, SUC drinking or a history of EtOH or SUC drinking. An acute EtOH deprivation effect was detected that was mostly reversed with EtOH drinking. These results suggest that binge-like drinking of moderate amounts of EtOH produces a deficit in neuronal function that could set the stage for the alleviation of anhedonic stimuli with further EtOH intake that strengthen EtOH seeking behaviors which may contribute to increased EtOH use in at risk individuals.  相似文献   

20.
5-hydroxytryptamine (5-HT) or serotonin 2A receptors play an important role in modulation of prefrontal cortex (PFC) activity and have been implicated in the physiopathology of psychiatric disorders. There is no quantitative information on the percentage of glutamatergic and GABAergic cells that express 5-HT(2A) receptors in human and monkey PFC. We have used double in situ hybridization to quantify the mRNA co-localization of 5-HT(2A) receptor with the glutamatergic transporter vesicular glutamate transporter 1, and with the GABAergic marker glutamic acid decarboxylase 65/67 and in parvalbumin and calbindin GABAergic cell populations. Our results show that nearly every glutamatergic cell (86-100%) in layers II-V expressed 5-HT(2A) receptor mRNA in both species. This percentage was lower in layer VI (13-31%). In contrast, not all the GABAergic interneurons (13-46%) expressed 5-HT(2A) receptor mRNA. This receptor was expressed in 45-69% of parvalbumin and in 61-87% of calbindin positive cells. These results indicate that, while the majority of glutamatergic neurons can be sensitive to 5-HT action via 5-HT(2A) receptors, this modulation occurs only in a limited population of GABAergic interneurons and provides new neuroanatomical information about the role played by serotonin through 5-HT(2A) receptors in the PFC and on the sites of action for drugs such as antipsychotics and antidepressants used in treatment of psychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号