首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An apparatus for measuring the impedance of intact biological organs or parts of organs in the frequency range of 10 Hz to 10 MHz is described. In this range impedance exhibits a large dispersion, which is dependent on tissue structures. The time course of alterations of electrical impedance such as occur during ischemia can be recorded with this equipment. Five specimens in five measuring chambers can be examined simultaneously at different temperatures. In the second part of the article, a portable impedance meter for measuring the modulus of impedance near 200 Hz, the phase of impedance at 5 kHz and the local temperature at the measuring point, is described. These parameters permit an intra-operative evaluation of the changing state of ischemic organs. Sterilizable probes with four surface electrodes and an integrated temperature sensor permit atraumatic measurements at the organ surface. The measurement itself is harmless to the tissue.  相似文献   

2.
Hu G  He B 《PloS one》2011,6(8):e23421
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an emerging approach for noninvasively imaging electrical impedance properties of biological tissues. The MAT-MI imaging system measures ultrasound waves generated by the Lorentz force, having been induced by magnetic stimulation, which is related to the electrical conductivity distribution in tissue samples. MAT-MI promises to provide fine spatial resolution for biological tissue imaging as compared to ultrasound resolution. In the present study, we first estimated the imaging spatial resolution by calculating the full width at half maximum (FWHM) of the system point spread function (PSF). The actual spatial resolution of our MAT-MI system was experimentally determined to be 1.51 mm by a parallel-line-source phantom with Rayleigh criterion. Reconstructed images made from tissue-mimicking gel phantoms, as well as animal tissue samples, were consistent with the morphological structures of the samples. The electrical conductivity value of the samples was determined directly by a calibrated four-electrode system. It has been demonstrated that MAT-MI is able to image the electrical impedance properties of biological tissues with better than 2 mm spatial resolution. These results suggest the potential of MAT-MI for application to early detection of small-size diseased tissues (e.g. small breast cancer).  相似文献   

3.
De Blasio BF  Laane M  Walmann T  Giaever I 《BioTechniques》2004,36(4):650-4, 656, 658 passim
A new method combining optical and electrical impedance measurements is described that enables submicroscopic cell movements to be monitored. The cells are grown on small gold electrodes that are transparent to light. This modified electrical cell-substrate impedance sensor (ECIS) allows simultaneous microscopic recording of both growth and motility, thus enabling cell confluence on the electrodes to be systematically correlated to the impedance in regular time intervals of seconds and for extended periods of time. Furthermore, the technique provides an independent measure of monolayer cell densities that we compare to calculated values from a theoretical model. We have followed the attachment and spreading behavior of epithelial Madin-Darby canine kidney strain I (MDCK-I) cell cultures on microelectrodes for up to 40 h. The studies reveal a high degree of correlation between the measured resistance at 4 kHz and the corresponding cell confluence in 4- to 6-h intervals with typical linear cross-correlation factors of r equaling approximately 0.9. In summary, the impedance measured with the ECIS technique provides a good quantitative measure of cell confluence.  相似文献   

4.
Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.  相似文献   

5.
The purpose of this study was to investigate the changes in specific absorption rate (SAR) in human-head tissues while using nonmagnetic metallic electroencephalography (EEG) electrodes and leads during magnetic resonance imaging (MRI). A realistic, high resolution (1 mm(3)) head model from individual MRI data was adopted to describe accurately thin tissues, such as bone marrow and skin. The RF power dissipated in the human head was evaluated using the FDTD algorithm. Both surface and bird cage coils were used. The following numbers of EEG electrodes/leads were considered: 16, 31, 62, and 124. Simulations were performed at 128 and 300 MHz. The difference in SAR between the electrodes/leads and no-electrodes conditions was greater with the bird cage coil than with the surface coil. The peak 1 g averaged SAR values were highest at 124 electrodes, increasing to as much as two orders of magnitude (x172.3) at 300 MHz compared to the original value. At 300 MHz, there was a fourfold (x3.6) increase of SAR averaged over the bone marrow, and a sevenfold (x7.4) increase in the skin. At 128 MHz, there was a fivefold (x5.6) increase of whole head SAR. Head models were obtained from two different subjects, with an inter-subject whole head SAR variability of 3%. .  相似文献   

6.
Results are presented here of experimental measurements using a four-point electrode technique to measure the complex impedance of bovine aorta submerged in Ringer's solution. Impedance measurements were taken at 250 microm intervals, ranging from 0 (the electrode directly on the surface of the tissue) to 10 mm. Frequencies ranged from 1 kHz to 10 MHz. Throughout this range, the measured impedance changed by an average of 400% when the electrode was 10 mm from the tissue as compared to when the electrode was in direct contact with the tissue. The change in impedance made it possible to determine when the electrode made contact with the arterial wall.  相似文献   

7.
We designed and fabricated the nanomechanical Pb(Zr0.52Ti0.48)O3 (PZT) cantilever; we demonstrated a novel electrical measurement, under a controlled ambient temperature and humidity, for label-free detection of a prostate-specific antigen (PSA); and we achieved a detection sensitivity as low as 10 pg/ml. For the fabrication of our nanomechanical PZT cantilevers, we used composite layers of Ta/Pt/PZT/Pt/SiO2 on a SiN(x) supporting layer for electrical self-sensing without external oscillators. This method allows PSA proteins to be detected via a simple electrical measurement of the resonant frequency change generated by the molecular interaction of the antigen (Ag) and the antibody (Ab). The resonant frequency shifted due to the specific binding of the PSA Ag to its Ab which is immobilized via calixcrown self-assembled monolayers on an Au surface deposited on a nanomechanical PZT cantilever. We determined the resonant frequency shift as the value of -172 Hz and -273 Hz, when the concentration of PSA Ag was 1 ng/ml, with the cantilever dimensions of 100 microm x 300 microm and 50 microm x 150 microm, respectively. Theoretical and experimental analysis suggests that the minimum detectable sensitivity for a resonant frequency shift due to a PSA Ag-Ab interaction depends on the dimensions of the nanomechanical PZT cantilever. These results also demonstrate that the experimentally measured resonant frequency shift is larger than that calculated theoretically due to the compressive stress of the PSA Ag-Ab interaction.  相似文献   

8.
This study describes the fabrication and performance of an endothelial cell compatible, optically thin, indium tin oxide (ITO) microimpedance biosensor. The biosensor was constructed by sputtering a thin insulating layer of silicon nitride (Si(3)N(4)) onto a 100 nm thick ITO layer. Indium tin oxide electrodes were formed by chemically etching 250 or 500 microm diameter holes through the Si(3)N(4) insulating layer. The exposed ITO electrode was electrically connected to an ITO counter electrode, approximately 2 cm(2) in area, via a 400 microL well containing cell culture media. A lock-in amplifier circuit monitored the impedance of porcine pulmonary artery endothelial cells (PPAECs) cultivated on the electrodes as a function of frequency, between 10 and 100 kHz, and as a function of time, at 5.62 kHz. The ITO-Si(3)N(4) microelectrodes provided consistent and repeatable impedance measurements to the attachment and spreading of PPAECs. In addition, the ITO-Si(3)N(4) electrodes were recyclable, robust, resistant to ethanol sterilization, and had a high optical transmittance. Most importantly, the ITO-Si(3)N(4) electrodes allowed optical access for dynamic cellular attachment imaging. The 5.62 kHz time dependent cellular impedance response to the drug Cytochalasin D further demonstrated the feasibility of using this electrode configuration for dynamic cellular impedance studies.  相似文献   

9.
The study of intracellular communication requires devices that can not only monitor the bioelectric activity, but also control and observe the biochemical environment at the cellular level. This paper reports on the development and characterisation of implantable polyimide microprobes that allow simultaneous, selective chemical delivery/probing and multi-channel recording/stimulation of bioelectric activity. The key component of the system is a flexible polyimide substrate with embedded microchannels that is batch-fabricated combining polyimide micromachining and a lamination technique. The devices provide platinum microelectrodes on both sides of the polyimide substrate with an active surface between 20 microm x 20 microm and 50 microm x 50 microm. The embedded microchannels permit highly localised drug delivery or probing at the tip of the device via channel outlets adjacent to the microelectrodes. The microelectrodes were characterised by electrical impedance spectroscopy and the microchannels were studied in microflow experiments. Two different fluid delivery schemes were explored in two different designs. The first device type consists of a simple combination of microchannels and microelectrodes on one substrate. Liquids are ejected at the tip of the device by pressure injection techniques. The second device was inspired by the so-called U-tube concept allowing for highly localised delivery of controlled amounts of liquids in the picoliters range. Thus, the influence of chemical compounds on the electrical activity of cells can be studied with high temporal and spatial resolution. The flexible, implantable devices can be used for studying the chemical and electrical information exchange and communication of cells in in vivo and in vitro experiments.  相似文献   

10.
We used the Aberdeen impedance imaging system to drive a constant current of 1 mA on a 10 kHz sine wave into the upper arm encircled by an elastic belt of 16 equi-spaced strip electrodes. The system was used to examine a normal upper arm, an upper arm with a recent humeral fracture and an upper arm with a clinically united fracture. We approximated the human upper arm to a circular cylinder and assumed bilateral symmetry of normal human limbs. We measured transverse limb resistivity ratios and reconstructed static two-dimensional images of the spatial distribution of log(resistivity) by the equipotential back projection technique using a homogeneous muscle equivalent saline reference. Our results indicate that impedance osteography provides unique information about the changing electrical characteristics at the fracture site. This information could prove a useful adjunct to clinical and radiological tests for fracture union.  相似文献   

11.
Apoptosis is a strictly regulated and genetically encoded cell 'suicide' that may be triggered by cytokines, depletion of growth factors or certain chemicals. It is morphologically characterized by severe alterations in cell shape like cell shrinkage and disintegration of cell-cell contacts. We applied a non-invasive electrochemical technique referred to as electric cell-substrate impedance sensing (ECIS) in order to monitor the apoptosis-induced changes in cell shape in an integral and quantitative fashion with a time resolution in the order of minutes. In ECIS the cells are grown directly on the surface of small gold-film electrodes (d = 2 mm). From readings of the electrical impedance of the cell-covered electrode, performed with non-invasive, low amplitude sensing voltages, it is possible to deduce alterations in cell-cell and cell-substrate contacts. To improve the sensitivity of this impedance assay we used endothelial cells derived from cerebral micro-vessels as cellular model systems since these are well known to express electrically tight intercellular junctions. Apoptosis was induced by cycloheximide (CHX) and verified by biochemical and cytological assays. The time course of cell shape changes was followed with unprecedented time resolution by impedance readings at 1 kHz and correlated with biochemical parameters. From impedance readings along a broad frequency range of 1-10(6) Hz we could assign the observed impedance changes to alterations on the subcellular level. We observed that disassembly of barrier-forming tight junctions precedes changes in cell-substrate contacts and correlates strongly with the time course of protease activation.  相似文献   

12.
Label-free and real-time monitoring of stem cells based on electrical impedance measurement is increasingly utilized for the quality control of the isolated stem cells to be used in stem cell-based tissue therapy or regenerative medicine. In spite of that the proliferative capacity and multipotency of stem cells are dependent on the type and age of the source tissue, however, the effect of the cell senescence on the impedance measurement of stem cells has not yet been studied. We investigated whether the senescence of adipose tissue-derived stem cells (ADSCs) can be detected by electrical impedance spectroscopy. For this, ADSCs at passage 9 and 31 were prepared and those genetic characteristics and growth kinetics were evaluated by quantitative polymerase chain reaction and cell counting. While the identified ADSCs were grown on the indium tin oxide electrodes, the impedance spectra were measured and interpreted by fitting analysis with an equivalent circuit model. ADSCs at passage 9 adhered on the electrode were small and spindle-shaped whereas the cells at passage 31 were flattened and larger than younger cells. At the beginning of culture time when the cell adhesion occurred, the resistance at 4.6 kHz of passage 31 cells was higher than passage 9 due to the larger size of older cells. Afterwards, the value of passage 9 cells increased higher than passage 31, since younger cells proliferated more than old cells. Therefore, the impedance measurement could characterize the proliferative capacity of ADSCs during expanded culture.  相似文献   

13.
Metabolite gradients might guide mitochondrial localization in cells and angiogenesis in tissues. It is unclear whether they can exist in single cells, because the length scale of most cells is small compared to the expected diffusion times of metabolites. For investigation of metabolic gradients, we need experimental systems in which spatial patterns of metabolism can be systematically measured and manipulated. We used concentrated cytoplasmic extracts from Xenopus eggs as a model cytoplasm, and visualized metabolic gradients formed in response to spatial stimuli. Restriction of oxygen supply to the edge of a drop mimicked distance to the surface of a single cell, or distance from a blood vessel in tissue. We imaged a step-like increase of Nicotinamide adenine dinucleotide (NAD) reduction approximately 600 microm distant from the oxygen source. This oxic-anoxic switch was preceded on the oxic side by a gradual rise of mitochondrial transmembrane potential (Deltapsi) and reactive oxygen species (ROS) production, extending over approximately 600 microm and approximately 300 microm, respectively. Addition of Adenosine triphosphate (ATP)-consuming beads mimicked local energy sinks in the cell. We imaged Deltapsi gradients with a decay length of approximately 50-300 microm around these beads, in the first visualization of an energy demand signaling gradient. Our study demonstrates that mitochondria can pattern the cytoplasm over length scales that are suited to convey morphogenetic information in large cells and tissues and provides a versatile model system for probing of the formation and function of metabolic gradients.  相似文献   

14.
Three-dimensional (3D) cell culture has developed rapidly over the past 5–10 years with the goal of better replicating human physiology and tissue complexity in the laboratory. Quantifying cellular responses is fundamental in understanding how cells and tissues respond during their growth cycle and in response to external stimuli. There is a need to develop and validate tools that can give insight into cell number, viability, and distribution in real-time, nondestructively and without the use of stains or other labelling processes. Impedance spectroscopy can address all of these challenges and is currently used both commercially and in academic laboratories to measure cellular processes in 2D cell culture systems. However, its use in 3D cultures is not straight forward due to the complexity of the electrical circuit model of 3D tissues. In addition, there are challenges in the design and integration of electrodes within 3D cell culture systems. Researchers have used a range of strategies to implement impedance spectroscopy in 3D systems. This review examines electrode design, integration, and outcomes of a range of impedance spectroscopy studies and multiparametric systems relevant to 3D cell cultures. While these systems provide whole culture data, impedance tomography approaches have shown how this technique can be used to achieve spatial resolution. This review demonstrates how impedance spectroscopy and tomography can be used to provide real-time sensing in 3D cell cultures, but challenges remain in integrating electrodes without affecting cell culture functionality. If these challenges can be addressed and more realistic electrical models for 3D tissues developed, the implementation of impedance-based systems will be able to provide real-time, quantitative tracking of 3D cell culture systems.  相似文献   

15.
The aim of our experiments was to study the thoracic electrical impedance method as a method for measuring cardiac output in anesthetized dogs. Four electrodes were placed around the neck and thorax. A 50 kHz, 1 mA electric current was applied to the outer two electrodes and the two inner electrodes were used to measure impedance changes related to the stroke volume during the cardiac cycle at end-expiratory apnea. The cardiac output obtained by the impedance method was compared to the cardiac output measured by isotope dilution and by the electromagnetic flowmeter. Either mean cardiac output or cardiac output determined beat-to-beat from the pulsatile flow was measured with the latter method. Significant correlations were obtained between the impedance and the isotope dilution method (r = 0.8799), and between the impedance and the electromagnetic (mean) flow measurements (r = 0.7330). The comparison of impedance cardiac output to that determined from the pulsatile flow (beat-to-beat) also showed a good correlation (r = 0.7618). The effect of changing the fluid and air contents in the chest on the basal thoracic impedance was also studied.  相似文献   

16.
Micromachined probes, with iridium (Ir) microelectrodes on silicon shanks, were evaluated to assess their suitability for cardiac electrogram recording. The electrochemical activation (anodic oxidation) procedure for the circular Ir microelectrode was investigated using the square wave potential according to the electrode size, number of cycles, and cathodic-anodic potential level of the square wave. Increase in the charge storage capacity was pronounced either in smaller electrodes or with higher potential level of the square wave. The electrode impedance reduced in a similar manner with increasing number of cycle irrespective of the electrode size. With either lower potential level (-0.70/+0.60 V) or smaller number of cycle (200 cycles) than those for the activation of stimulating electrode, the likelihood of overactivation of the recording microelectrode can be minimized. These anodic IrOx film (AIROF) microelectrodes were used for the recording of extracellular electrograms in two different ex vivo cardiac tissue preparations. A single-shank microprobe was applied to the left ventricle of a mouse heart. Both the spontaneous and paced transmural responses propagating between epicardium and endocardium were obtained. Longitudinal cardiac wavefronts propagating along the rabbit papillary muscle were also recorded with a unique multiple-shank design. The measured mean amplitude and the propagation velocity of the extracellular voltage were 12.2 +/- 1.8 mV and 58.9 +/- 2.2 cm/s, respectively (n = 27). These microprobes with precisely defined electrode spacing make a useful tool for the spatial and temporal mapping of electrical properties in isolated heart tissues ex vivo.  相似文献   

17.
For a feasible and cost-effective impedance measurement of cellular alterations in real-time, we combined commercially available microelectrode arrays (MEAs), consisting of 60 microelectrodes, with a conventional impedance analyzer. For proof of principle, a breast carcinoma cell line (MCF-7) was cultured on MEAs, and cellular alterations were measured by impedance spectroscopy at a frequency ranging from 10 Hz to 1 MHz. Cells were stimulated with phorbol 12-myristate 13-acetate (PMA) at different concentrations to activate protein kinase C (PKC)-mediated extra- and intracellular changes. By addition of 0.03 microM PMA, an increase of the relative impedance (Z(rel)) was observed after 10 min with a maximum at 1 kHz. Moreover a gradual elevation of the impedance was measured 60 min after stimulation with PMA. If 0.3 microM PMA was applied, the maximal amplitude of the relative impedance after 60 min shifted from 1 kHz (0.03 microM PMA) to 150 Hz. Subsequently, the impedance was further increased up to 90 min after PMA application, after which the impedance reduced after 240 min. Since we could use MEAs for at least 10 times without affecting the sensitivity, our study revealed that commercially available MEAs comprising nanocolumnar titanium nitrite electrodes are suitable microstructures for a highly reproducible and cost-effective multisite measurement of intracellular processes by impedance spectroscopy.  相似文献   

18.
The computed tomography imaging spectrometer (CTIS) is a non-scanning instrument capable of simultaneously acquiring full spectral information (450-750 nm) from every position element within its field of view (75 microm x 75 microm). The current spatial and spectral sampling intervals of the spectrometer are 1.0 microm and 10 nm, respectively. This level of resolution is adequate to resolve signal responses from multiple fluorescence probes located within individual cells or different locations within the same cell. Spectral imaging results are presented from the CTIS combined with a commercial inverted fluorescence microscope. Results demonstrate the capability of the CTIS to monitor the spatiotemporal evolution of pH in rat insulinoma cells loaded with SNARF-1. The ability to analyze full spectral information for two-dimensional (x, y) images allows precise evaluation of heterogeneous physiological responses within cell populations. Due to low signal levels, integration times up to 2 s were required. However, reasonable modifications to the instrument design will provide higher system transmission efficiency with increased temporal and spatial resolution. Specifically, a custom optical design including the use of a larger format detector array is under development for a second-generation system.  相似文献   

19.
Our results demonstrate high-frequency electrical resonances in outer hair cells (OHCs) exhibiting features analogous to classical piezoelectric transducers. The fundamental (first) resonance frequency averaged f(n) approximately 13 kHz (Q approximately 1.7). Higher-order resonances were also observed. To obtain these results, OHCs were positioned in a custom microchamber and subjected to stimulating electric fields along the axis of the cell (1-100 kHz, 4-16 mV/80 microm). Electrodes embedded in the side walls of the microchamber were used in a voltage-divider configuration to estimate the electrical admittance of the top portion of the cell-loaded chamber (containing the electromotile lateral wall) relative to the lower portion (containing the basal plasma membrane). This ratio exhibited resonance-like electrical tuning. Resonance was also detected independently using a secondary 1-MHz radio-frequency interrogation signal applied transversely across the cell diameter. The radio-frequency interrogation revealed changes in the transverse electric impedance modulated by the axial stimulus. Modulation of the transverse electric impedance was particularly pronounced near the resonant frequencies. OHCs used in our study were isolated from the apical region of the guinea pig cochlea, a region that responds exclusively to low-frequency acoustic stimuli. In this sense, electrical resonances we observed in vitro were at least an order of magnitude higher (ultrasonic) than the best physiological frequency of the same OHCs under acoustic stimuli in vivo. These resonance data further support the piezoelectric theory of OHC function, and implicate piezoelectricity in the broad-band electromechanical behavior of OHCs underlying mammalian cochlear function.  相似文献   

20.
Multicellular tumour spheroids that mimic a native cellular environment are widely used as model systems for drug testing. To study drug effects on three-dimensional cultures in real-time we designed and fabricated a novel type of sensor chip for fast, non-destructive impedance spectroscopy and extracellular recording. Precultured spheroids are trapped between four gold electrodes. Fifteen individual 100microm deep square microcavities with sizes from 200 to 400microm allow an optimised positioning during the measurement. Although apoptosis was induced in human melanoma spheroids by Camptothecin (CTT), treated cultures did not show disintegration but displayed increased impedance magnitudes compared to controls after 8h resulting from an altered morphology of the outer cells. Contractions in cardiomyocyte spheroids were monitored when the innovative chip was used for recording of extracellular potentials. The silicon-based electrode array is used as an acute test system for the monitoring of any kind of 3D cell cultures. Since no adherence of cells or labelling is necessary the multifunctional sensor chip provides a basis for improved drug development by high content screenings with reduced costs and assay times. Additional improvements for parallel testing of different substances on one chip are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号