首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The γ-butyrolactone autoregulator signaling cascades have been shown to control secondary metabolism and/or morphological development among many Streptomyces species. However, the conservation and variation of the regulatory systems among actinomycetes remain to be clarified. The genome sequence of Kitasatospora setae, which also belongs to the family Streptomycetaceae containing the genus Streptomyces, has revealed the presence of three homologues of the autoregulator receptor: KsbA, which has previously been confirmed to be involved only in secondary metabolism; KsbB; and KsbC. We describe here the characterization of ksbC, whose regulatory cluster closely resembles the Streptomyces virginiae barA locus responsible for the autoregulator signaling cascade. Deletion of the gene ksbC resulted in lowered production of bafilomycin and a defect of aerial mycelium formation, together with the early and enhanced production of a novel β-carboline alkaloid named kitasetaline. A putative kitasetaline biosynthetic gene cluster was identified, and its expression in a heterologous host led to the production of kitasetaline together with JBIR-133, the production of which is also detected in the ksbC disruptant, and JBIR-134 as novel β-carboline alkaloids, indicating that these genes were biosynthetic genes for β-carboline alkaloid and thus are the first such genes to be discovered in bacteria.  相似文献   

5.
The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the beta-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase, aminotransferase, and GDP-mannose dehydratase, respectively. In the present study, the functions of these three genes were analyzed. The recombinant NysDIII protein was expressed in Escherichia coli and purified, and its in vitro GDP-mannose dehydratase activity was demonstrated. The nysDI and nysDII genes were inactivated individually in S. noursei, and analyses of the resulting mutants showed that both genes produced nystatinolide and 10-deoxynystatinolide as major products. Expression of the nysDI and nysDII genes in trans in the respective mutants partially restored nystatin biosynthesis in both cases, supporting the predicted roles of these two genes in mycosamine biosynthesis and attachment. Both antifungal and hemolytic activities of the purified nystatinolides were shown to be strongly reduced compared to those of nystatin, confirming the importance of the mycosamine moiety for the biological activity of nystatin.  相似文献   

6.
7.
Arginine biosynthetic genes from Campylobacter jejuni TGH9011 were cloned by functional complementation of the respective Escherichia coli arginine biosynthetic mutants. Complementation of argA, argB, argC, argD, argE, argF, and argH auxotrophs was accomplished using a pBR322-based C. jejuni TGH9011 plasmid library. By cross-complementation analyses, the first four steps of arginine biosynthesis were shown to be closely linked on the genome. Two additional clones complementing the first (ArgA) and fifth (ArgE) steps in arginine biosynthesis were obtained. Neither recombinant showed linkage to the arg cluster, to each other, nor to other arginine biosynthetic functions by cross-complementation. Genes argF and argH were not linked to other arginine biosynthetic genes by cross-complementation analysis. Restriction enzyme patterns of recombinant plasmids fell into five groups. Group I contained the arg(ABCD) complementing locus. Group II and Group III were the two genetic loci corresponding to the argA and argE complementing genes. Group II contains the hipO gene encoding N-benzoylglycine-amino-acid amidohydrolase, also known as hippurate hydrolase. Group III contains the hipO homolog of C. jejuni. Group IV represents the argF gene. Group V is the argH gene. Functional complementation of mutations in the first four steps of the arginine biosynthetic pathway was obtained on recombinant plasmid pARGC2. The predicted order of gene complementation was argCargA(argBargD). The sequence of the insert in plasmid pARGC2 revealed direct homologs for argC, argB, and argD. However, sequence analysis of the gene complementing ArgA function in two separate E. coli argA mutants determined that the C. jejuni gene was not a canonical argA gene. The gene complementing the argA defect, which we call argO, showed limited homology to the streptothricin acetyltransferase gene (sat) of Escherichia coli. The flanking open reading frames in pARGC2 showed no homologies to arginine biosynthetic genes. The structure of the argCOBD gene arrangement is discussed with reference to the presence and location of other arginine biosynthetic genes on the genome of C. jejuni and other bacterial organisms.  相似文献   

8.
The tallysomycins (TLMs) belong to the bleomycin (BLM) family of antitumor antibiotics. The BLM biosynthetic gene cluster has been cloned and characterized previously from Streptomyces verticillus ATCC 15003, but engineering BLM biosynthesis for novel analogs has been hampered by the lack of a genetic system for S. verticillus. We now report the cloning and sequencing of the TLM biosynthetic gene cluster from Streptoalloteichus hindustanus E465-94 ATCC 31158 and the development of a genetic system for S. hindustanus, demonstrating the feasibility to manipulate TLM biosynthesis in S. hindustanus by gene inactivation and mutant complementation. Sequence analysis of the cloned 80.2 kb region revealed 40 open reading frames (ORFs), 30 of which were assigned to the TLM biosynthetic gene cluster. The TLM gene cluster consists of nonribosomal peptide synthetase (NRPS) genes encoding nine NRPS modules, a polyketide synthase (PKS) gene encoding one PKS module, genes encoding seven enzymes for deoxysugar biosynthesis and attachment, as well as genes encoding other biosynthesis, resistance, and regulatory proteins. The involvement of the cloned gene cluster in TLM biosynthesis was confirmed by inactivating the tlmE glycosyltransferase gene to generate a TLM non-producing mutant and by restoring TLM production to the DeltatlmE::ermE mutant strain upon expressing a functional copy of tlmE. The TLM gene cluster is highly homologous to the BLM cluster, with 25 of the 30 ORFs identified within the two clusters exhibiting striking similarities. The structural similarities and differences between TLM and BLM were reflected remarkably well by the genes and their organization in their respective biosynthetic gene clusters.  相似文献   

9.
10.
Furaquinocin (FQ) A, produced by Streptomyces sp. strain KO-3988, is a natural polyketide-isoprenoid hybrid compound that exhibits a potent antitumor activity. As a first step toward understanding the biosynthetic machinery of this unique and pharmaceutically useful compound, we have cloned an FQ A biosynthetic gene cluster by taking advantage of the fact that an isoprenoid biosynthetic gene cluster generally exists in flanking regions of the mevalonate (MV) pathway gene cluster in actinomycetes. Interestingly, Streptomyces sp. strain KO-3988 was the first example of a microorganism equipped with two distinct mevalonate pathway gene clusters. We were able to localize a 25-kb DNA region that harbored FQ A biosynthetic genes (fur genes) in both the upstream and downstream regions of one of the MV pathway gene clusters (MV2) by using heterologous expression in Streptomyces lividans TK23. This was the first example of a gene cluster responsible for the biosynthesis of a polyketide-isoprenoid hybrid compound. We have also confirmed that four genes responsible for viguiepinol [3-hydroxypimara-9(11),15-diene] biosynthesis exist in the upstream region of the other MV pathway gene cluster (MV1), which had previously been cloned from strain KO-3988. This was the first example of prokaryotic enzymes with these biosynthetic functions. By phylogenetic analysis, these two MV pathway clusters were identified as probably being independently distributed in strain KO-3988 (orthologs), rather than one cluster being generated by the duplication of the other cluster (paralogs).  相似文献   

11.
The carotenoid biosynthesis genes form a cluster within the genome of Rhodobacter sphaeroides, lying in the middle of a larger cluster and 45 kb in length, which contains genes for bacteriochlorophyll biosynthesis and for the reaction center and light-harvesting apoproteins. The positions and approximate limits of the carotenoid genes were determined previously by localized transposon Tn5 mutagenesis and by comparison with the closely related Rhodobacter capsulatus carotenoid gene cluster. In this report, analysis of the DNA and deduced amino acid sequences of the carotenoid genes in R. sphaeroides are presented. Twenty-five Tn5 insertion mutants were used to produce a base-specific Tn5 insertion map of this region, and carotenoid gene assignment was supported by spectroscopic, ultrastructural, and high-pressure liquid chromatography analyses of these mutants. A region in the 3' end of crtD which affects bacteriochlorophyll biosynthesis was discovered, and CrtA was found to possess a proline-rich C-terminal region containing a repeated (Ala-Pro)n motif. CrtF also showed a high degree of sequence conservation with eukaryotic O-methyltransferases. This study provides gene sequences and assignments based upon a comprehensive structural, spectroscopic, and biochemical analysis of a range of carotenoid biosynthetic mutants; in each mutation, the point of Tn5 insertion is determined accurate to 1 bp on the gene cluster.  相似文献   

12.
Eurekanate belongs to the important class of branched-chain carbohydrates present in a wide variety of natural sources. It is a component of avilamycin A, a potent inhibitor of bacterial protein synthesis targeting the 50S ribosomal subunit. The present work provides experimental proof for the function of two genes of the avilamycin biosynthetic gene cluster, aviB1 and aviO2, that are both involved in avilamycin structure modification. The functions of both genes were identified by gene inactivation experiments and nuclear magnetic resonance analyses of extracts produced by the mutants. We suggest that both AviO2 and AviB1 are involved in the biosynthesis of eurekanate within avilamycin biosynthesis. Moreover, two other genes (aviO1 and aviO3) have been inactivated, resulting in a breakdown of avilamycin production in the mutants ITO1 and ITO3, which clearly shows the essential role of both enzymes in avilamycin biosynthesis. The exact functions of both aviO1 and aviO3 remained unknown.  相似文献   

13.
The aminocoumarin antibiotic coumermycin A(1) contains a central and two terminal pyrrole moieties. The coumermycin gene cluster in Streptomyces rishiriensis contains three genes (couN3, couN4 and couN5) that show sequence similarity to genes involved in the biosynthesis of the pyrrole moieties of pyoluteorin in Pseudomonas fluorescens and of undecylprodiginine in S. coelicolor. The gene couN3, which codes for a putative L-prolyl-S-PCP dehydrogenase, and the gene couN4, which encodes a putative L-prolyl-AMP ligase, were disrupted using in-frame deletion and insertional inactivation, respectively. HPLC analysis of culture extracts showed that formation of the two terminal pyrrole moieties was abolished in the couN3 (-) und couN4 (-) mutants. The mutants accumulated coumermycin D, which contains only the central pyrrole moiety. This result not only confirmed the involvement of couN3 and couN4 in the biosynthesis of the terminal pyrrole-2-carboxylic acid moieties of coumermycin A(1), but also indicated, for the first time, that the central 3-methylpyrrole-2,4-dicarboxylic acid unit of the coumermycins is formed by a biosynthetic pathway that differs from that used to assemble the terminal pyrrole moieties. novN, a putative carbamoyl transferase gene from the gene cluster for novobiocin biosynthesis in S. spheroides was expressed in the couN3 (-) mutant. This led to the formation of bis-carbamoylated coumermycin D, a novel compound of the coumermycin series.  相似文献   

14.
Deductions from the molecular analysis of the 65,000-bp stigmatellin biosynthetic gene cluster are reported. The biosynthetic genes (stiA-J) encode an unusual bacterial modular type I polyketide synthase (PKS) responsible for the formation of this aromatic electron transport inhibitor produced by the myxobacterium Stigmatella aurantiaca. Involvement of the PKS gene cluster in stigmatellin biosynthesis is shown using site-directed mutagenesis. One module of the PKS is assumed to be used iteratively during the biosynthetic process, which seems to involve an unusual transacylation of the biosynthetic intermediate from an acyl carrier protein domain back to the preceding ketosynthase domain. Finally, the polyketide chain which is presumably catalyzed by a novel C-terminal domain in StiJ that does not resemble thioesterases, is cyclized and aromatized. The presented results of feeding experiments are in good agreement with the proposed biosynthetic scheme. In contrast to all other PKS type I systems reported to date, each module of StiA-J is encoded on a separate gene. The gene cluster contains a "stand alone" O-methyltransferase and two unusual O-methyltransferase domains embedded in the PKS. In addition, inactivation of a cytochrome P450 monooxygenase-encoding gene involved in post-PKS hydroxylation of the aromatic ring leads to the formation of two novel stigmatellin derivatives.  相似文献   

15.
The gene cluster responsible for ML-236B (compactin) biosynthesis has recently been characterized from P. citrinum No. 41520. Here, we describe how the ML-236B-producing strain was improved using a cosmid-mediated recombination technique. The introduction of the cosmid pML48, which contains seven of the nine ML-236B biosynthetic genes, into P. citrinum No. 41520 resulted in transformants which produced increased amounts of ML-236B. Southern analysis showed that pML48 had been incorporated by a homologous recombination event, and all high producers possessed two copies of each of the seven genes, mlcA- mlcF and mlcR, suggesting that increased dosage of the biosynthetic gene cluster was responsible for the enhanced production of ML-236B. On the other hand, various kinds of mutants with decreased titers of ML-236B were also obtained. Characterization of one such mutant, designated as T48.28, which was more sensitive to ML-236B than the parental strain, suggested that one of the ML-236B biosynthetic genes, mlcD, which encodes a putative HMG-CoA reductase, was involved in conferring resistance to ML-236B.  相似文献   

16.
17.
The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the β-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase, aminotransferase, and GDP-mannose dehydratase, respectively. In the present study, the functions of these three genes were analyzed. The recombinant NysDIII protein was expressed in Escherichia coli and purified, and its in vitro GDP-mannose dehydratase activity was demonstrated. The nysDI and nysDII genes were inactivated individually in S. noursei, and analyses of the resulting mutants showed that both genes produced nystatinolide and 10-deoxynystatinolide as major products. Expression of the nysDI and nysDII genes in trans in the respective mutants partially restored nystatin biosynthesis in both cases, supporting the predicted roles of these two genes in mycosamine biosynthesis and attachment. Both antifungal and hemolytic activities of the purified nystatinolides were shown to be strongly reduced compared to those of nystatin, confirming the importance of the mycosamine moiety for the biological activity of nystatin.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号