首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Microsomal monoacyglycerol acyltransferase is a developmentally expressed enzyme that catalyzes the synthesis of sn-1,2-diacylglycerol from sn-2-monoacylglycerol and palmitoyl-CoA. The activity is present in liver from fetal and suckling rats but is absent in the adult. In order to obtain a stable permanent cell line that expresses this activity, Fao rat hepatoma cells and hepatocytes from 8-day-old baby rats were hybridized and clones were selected. Two hybrids (HA1 and HA7) expressed monoacylglycerol acyltransferase activity. Like fetal hepatocytes, but unlike hepatocytes from postnatal rats, the HA cells had high rates of [14C]acetate incorporation into glycerolipids, cholesterol, and cholesteryl esters, and they secreted triacylglycerol into the media. Monoacylglycerol acyltransferase specific activity increased 2.5-fold as the cells divided in culture, suggesting growth-dependent regulation. The specific activities of glycerol-P acyltransferase, the committed step of the microsomal pathway of glycerolipid synthesis, and diacylglycerol acyltransferase, the activity unique to triacylglycerol biosynthesis, were comparable to the levels of the corresponding activities in fetal hepatocytes. Addition of insulin or dexamethasone to the media increased the incorporation of [14C]oleate into triacyglycerol about 1.7-fold within 2 h, but had little effect on [14C]oleate incorporation into phospholipid. These hormonally responsive rat-hepatoma/hepatocyte hybrids reflect the fetal stage of hepatocyte development in five major aspects of lipid metabolism: sterol, fatty acid, and triacylglycerol biosynthesis, glycerolipid secretion, and the presence of the developmentally expressed monoacylglycerol pathway.  相似文献   

2.
King A  Nam JW  Han J  Hilliard J  Jaworski JG 《Planta》2007,226(2):381-394
The surface of plants is covered by cuticular wax, which contains a mixture of very long-chain fatty acid (VLCFA) derivatives. This wax surface provides a hydrophobic barrier which reduces non-stomatal water loss. One component of the cuticular wax is the alkyl esters, which typically contain a VLCFA esterified to an alcohol of a similar length. As part of an EST project, we recently identified an acyltransferase with 19% sequence identity (amino acid) to a bacterial ‘bifunctional’ wax-ester synthase/diacylglycerol acyltransferase (WS/DGAT). Northern analysis revealed that this petunia homologue was expressed predominantly within the petals. The cDNA encoding the WS/DGAT homologue was introduced into a yeast strain deficient in triacylglycerol biosynthesis. The expressed protein failed to restore triacylglycerol biosynthesis, indicating that it lacked DGAT activity. However, isoamyl esters of fatty acids were detected, which suggested that the petunia cDNA encoded a wax-synthase. Waxes were extracted from petunia petals and leaves. The petal wax extract was rich in VLCFA esters of methyl, isoamyl, and short-to-medium straight chain alcohols (C4–C12). These low molecular weight wax-esters were not present in leaf wax. In-vitro enzymes assays were performed using the heterologously expressed protein and 14C-labelled substrates. The expressed protein was membrane bound, and displayed a preference for medium chain alcohols and saturated very long-chain acyl-CoAs. In fact, the activity would be sufficient to produce most of the low molecular wax-esters present in petals, with methyl-esters being the exception. This work is the first characterization of a eukaryotic protein from the WS/DGAT family. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Microsomal membrane preparations from Mortierella alpina catalysed the conversion of sn-glycerol 3-phosphate and [(14)C]oleoyl-CoA to radioactive phosphatidic acid, diacylglycerol and triacylglycerol. Experiments with lysophosphatidic acid and [(14)C]oleoyl-CoA gave a similar pattern of radioactivity in the complex lipids. The specific activity of lysophosphatidate acyltransferase was almost eight times greater than sn-glycerol-3-phosphate acyltransferase, indicating that the first acylation step was limiting in oil assembly in the microsomal membranes. Little conversion of radioactive oleate into phosphatidylcholine occurred, suggesting that triacylglycerol assembly and its relationship to phosphatidylcholine metabolism differed to that found in oilseeds.  相似文献   

4.
Microsomal membrane preparations from the immature cotyledons of safflower (Carthamus tinctorius) catalysed the interconversion of the neutral lipids, mono-, di-, and triacylglycerol. Membranes were incubated with neutral lipid substrates, 14C-labelled either in the acyl or glycerol moiety, and the incorporation of radioactivity into other complex lipids determined. It was clear that diacylglycerol gave rise to triacylglycerol and monoacylglycerol as well as phosphatidylcholine. Radioactivity from added [14C] triacylglycerol was to a small extent transferred to diacylglycerol whereas added [14C] monoacylglycerol was rapidly converted to diacylglycerols and triacylglycerols. The formation of triacylglycerol from diacylglycerol occurred in the absence of acyl-CoA and hence did not involve diacylglycerol acyltransferase (DAGAT) activity. Monoacylglycerol was not esterified by direct acylation from acyl-CoA. We propose that these reactions were catalyzed by a diacylglycerol: diacylglycerol transacylase which yielded triacylglycerol and monoacylglycerol, the reaction being freely reversible. The specific activity of the transacylase was some 25% of the diacylglycerol acyltransferase activity and, hence, during the net accumulation of oil, substantial newly formed triacylglycerol equilibrated with the diacylglycerol pool. In its turn the diacylglycerol rapidly interconverted with phosphatidylcholine, the major complex lipid substrate for Δ12 desaturation. Hence, the oleate from triacylglycerols entering phosphatidylcholine via this route could be further desaturated to linoleate. A model is presented which reconciles these observations with our current understanding of fatty acid desaturation in phosphatidylcholine and oil assembly in oleaceous seeds. Received: 8 November 1996 / Accepted: 5 February 1997  相似文献   

5.
The limiting role of diacylglycerol acyltransferase with respect to triacylglycerol synthesis in cultured rat hepatocytes was evaluated by following the inhibition of the overall synthetic flux by 2-bromooctanoate acting as an inhibitor of the diacylglycerol acyltransferase step. The flux-control coefficient of diacylglycerol acyltransferase in intact cultured hepatocytes amounted to 0.76 in the presence of saturating glycerol and either palmitate or oleate as the fatty acyl substrates. The flux-control coefficient of diacylglycerol acyltransferase in lysolecithin-permeabilized cultured hepatocytes amounted to 0.80 and 0.99 in the presence of saturating glycerol 3-phosphate and either palmitate or oleate as the fatty acyl substrate, respectively. Hence, triacylglycerol synthesis in liver cells under the experimental conditions employed is rate-limited by the diacylglycerol acyltransferase.  相似文献   

6.
Developing cocoa cotyledons accumulate initially an unsaturated oil which is particularly rich in oleate and linoleate. However, as maturation proceeds, the characteristic high stearate levels appear in the storage triacylglycerols. In the early stages of maturation, tissue slices of developing cotyledons (105 days post anthesis, dpa) readily accumulate radioactivity from [14C]acetate into the diacylglycerols and label predominantly palmitate and oleate. In older tissues (130 dpa), by contrast, the triacylglycerols are extensively labelled and, at the same time, there is an increase in the percentage labelling of stearate. Thus, the synthesis of triacylglycerol and the production of stearate are co-ordinated during development. The relative labelling of the phospholipids (particularly phosphatidylcholine) was rather low at both stages of development which contrasts with oil seeds that accumulate a polyunsaturated oil (e.g. safflower). Microsomal membrane preparations from the developing cotyledons readily utilised an equimolar [14C]acyl-CoA substrate (consisting of palmitate, stearate and oleate) and glycerol 3-phosphate to form phosphatidate, diacylglycerol and triacylglycerol. Analysis of the [14C]acyl constituents at the sn-1 and sn-2 positions of phosphatidate and diacylglycerol revealed that the first acylase enzyme (glycerol 3-phosphate acyltransferase) selectively utilised palmitate over stearate and excluded oleate, whereas the second acylase (lysophosphatidate acyltransferase) was highly selective for the unsaturated acyl-CoA. On the other hand, the third acylase (diacylglycerol acyltransferase) exhibited an almost equal selectivity for palmitate and stearate. Thus, stearate is preferentially enriched at position sn-3 of triacylglycerol at 120–130 dpa because of the relatively higher selectivity of the diacylglycerol acyltransferase for this fatty acid compared with those of the other two acylation enzymes.Abbreviation dpa days post anthesis We are grateful to Drs. G. Pettipher (Cadbury-Schweppes, Reading, UK), M. End and P. Hadley (Department of Horticulture, University of Reading) for the supply of cocoa pods and to the Agricultural and Food Research Council for financial support. We also wish to thank Dr. S. Stymne (Swedish University of Agricultural Sciences, Uppsala, Sweden) for a generous gift of acyl-CoA substrates.  相似文献   

7.
In this study a pathway for the synthesis of triacylglycerol (TAG) within the lumen of the endoplasmic reticulum has been identified, using microsomes that had been preconditioned by depleting their endogenous substrates and then fusing them with biotinylated phosphatidylserine liposomes containing CoASH and Mg(2+). Incubating these fused microsomes with tri[(3)H] oleoylglycerol and [(14)C]oleoyl-CoA yielded microsome-associated triacylglycerol, which resisted extensive washing and had a [(3)H]:[(14)C] ratio close to 2:1. The data suggest that the precursor tri[(3)H]oleoylglycerol was hydrolyzed by microsomal lipase to membrane-bound di[(3)H]oleoylglycerol and subsequently re-esterified with luminal [(14)C]oleoyl-CoA. The accumulation of TAG within the microsomes, even when overt diacylglycerol acyltransferase (DGAT I) was inactive, is consistent with the existence of a latent diacylglycerol acyltransferase (DGAT II) within the microsomal lumen. Moreover, because luminal synthesis of TAG was carnitine-dependent and markedly reduced by glybenclamide, a potent carnitine acyltransferase inhibitor, microsomal carnitine acyltransferase appears to be essential for trafficking the [(14)C]oleoyl-CoA into the microsomal lumen for subsequent incorporation into newly synthesized TAG. This study thus provides the first direct demonstration of an enzymatic process leading to the synthesis of luminal triacylglycerol, which is a major component of very low density lipoproteins.  相似文献   

8.
Oilseeds provide a unique platform for the production of high-value fatty acids that can replace non-sustainable petroleum and oceanic sources of specialty chemicals and aquaculture feed. However, recent efforts to engineer the seeds of crop and model plant species to produce new types of fatty acids, including hydroxy and conjugated fatty acids for industrial uses and long-chain omega-3 polyunsaturated fatty acids for farmed fish feed, have met with only modest success. The collective results from these studies point to metabolic 'bottlenecks' in the engineered plant seeds that substantially limit the efficient or selective flux of unusual fatty acids between different substrate pools and ultimately into storage triacylglycerol. Evidence is emerging that diacylglycerol acyltransferase 2, which catalyzes the final step in triacylglycerol assembly, is an important contributor to the synthesis of unusual fatty acid-containing oils, and is likely to be a key target for future oilseed metabolic engineering efforts.  相似文献   

9.
Livers from fed male rats were perfused in a nonrecycling system for 60 min with a medium containing 100 mg/dl glucose, 3 g/dl bovine serum albumin, and ~0.5 mm oleic acid, with or without 20 μm dibutyryl cyclic adenosine-3′,5′-monophosphate (Bt2cAMP). At the termination of the experiment, microsomes were isolated from these livers. In agreement with data reported previously, Bt2cAMP decreased output of triacylglycerol, but stimulated ketogenesis and output of glucose; uptake of free fatty acid was unaffected by the nucleotide. Perfusion with Bt2AMP decreased the biosynthesis of triacylglycerol, diacylglycerol, and phosphatidate from sn-[U-14C]glycerol-3-phosphate by microsomes isolated from these livers. Perfusion with Bt2cAMP also decreased incorporation of sn-glycerol-3-phosphate into phosphatidate by microsomes isolated from the livers, when the microsomes were incubated with NaF to inhibit phosphatidate phosphohydrolase, and when fatty acid, coenzyme A and ATP were replaced by the acyl coenzyme A derivative; the formation of phosphatidate under these conditions was used as an estimate of the activity of sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15). However, the activities of microsomal phosphatidate phosphohydrolase (EC 3.1.3.4) and diacylglycerol acyltransferase (EC 2.3.1.20), measured with microsomal bound substrate, were increased by Bt2cAMP. These data have been interpreted to mean that Bt2cAMP inhibits hepatic microsomal synthesis of triacylglycerol at a step prior to the formation of phosphatidate, presumably at the glycerophosphate acyltransferase (EC 2.3.1.15) step(s).  相似文献   

10.
Microsomal membrane preparations from the developing seeds of sunflower (Helianthus annuus L.) catalyse the conversion of sn-glycerol-3-phosphate and acyl-CoA to triacylglycerol via phosphatidic acid and diacylglycerol. The formation of diacylglycerol from phosphatidic acid was Mg2+ dependent and in the presence of EDTA phosphatidic acid accumulated. This property was used to generate large quantities of endogenous radioactive phosphatidic acid in the membranes. On addition of Mg2+ the phosphatidic acid was used in triacylglycerol formation. Acyl-CoA had little effect on the label which accumulated in triacylglycerol from phosphatidic acid. Diacylglycerol acyltransferase, therefore, may not play a major role in oil formation as originally envisaged and other enzymes, including diacylglycerol:diacylglycerol transacylase [Stobart, Mancha, Lenman, Dahlqvist and Stymne (1997) Planta 203, 58-66] may have important biosynthetic functions.  相似文献   

11.
A new pathway for triacylglycerol biosynthesis involving a phospholipid:diacylglycerol acyltransferase (PDAT) was recently described (Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S, [2000] Proc Natl Acad Sci USA 97: 6487-6492). The LRO1 gene that encodes the PDAT was identified in yeast (Saccharomyces cerevisiae) and shown to have homology with animal lecithin:cholesterol acyltransferase. A search of the Arabidopsis genome database identified the protein encoded by the At5g13640 gene as the closest homolog to the yeast PDAT (28% amino acid identity). The cDNA of At5g13640 (AtPDAT gene) was overexpressed in Arabidopsis behind the cauliflower mosaic virus promoter. Microsomal preparations of roots and leaves from overexpressers had PDAT activities that correlated with expression levels of the gene, thus demonstrating that this gene encoded PDAT (AtPDAT). The AtPDAT utilized different phospholipids as acyl donor and accepted acyl groups ranging from C10 to C22. The rate of activity was highly dependent on acyl composition with highest activities for acyl groups containing several double bonds, epoxy, or hydroxy groups. The enzyme utilized both sn-positions of phosphatidylcholine but had a 3-fold preference for the sn-2 position. The fatty acid and lipid composition as well as the amounts of lipids per fresh weight in Arabidopsis plants overexpressing AtPDAT were not significantly different from the wild type. Microsomal preparations of roots from a T-DNA insertion mutant in the AtPDAT gene had barely detectable capacity to transfer acyl groups from phospholipids to added diacylglycerols. However, these microsomes were still able to carry out triacylglycerol synthesis by a diacylglycerol:diacylglycerol acyltransferase reaction at the same rate as microsomal preparations from wild type.  相似文献   

12.
Acylation of anthocyanins with hydroxycinnamic acid derivatives is one of the most important and less understood modification reactions during anthocyanin biosynthesis. Anthocyanin aromatic acyltransferase catalyses the transfer of hydroxycinnamic acid moieties from their CoA esters to the glycosyl groups of anthocyanins. A full-length cDNA encoding the anthocyanin 5-aromatic acyltransferase (5AT) ( EC 2.3.1.153 ) that acylates the glucose bound at the 5-position of anthocyanidin 3,5-diglucoside was isolated from petals of Gentiana triflora on the basis of the amino acid sequence of the purified enzyme. The isolated full-length cDNA had an open reading frame of 469 amino acids and the calculated molecular weight was 52 736. The deduced amino acid sequence contains consensus motifs that are conserved among the putative acyl CoA-mediated acyltransferases, and this indicates that 5AT is a member of a proposed superfamily of multifunctional acyltransferases ( St-Pierre et al . (1998 ) Plant J. 14, 703–713). The cDNA was expressed in Escherichia coli and yeast, and confirmed to encode 5AT. The enzymatic characteristics of the recombinant 5AT were consistent with those of the native gentian 5AT. Immunoblot analysis using specific antibodies to 5AT showed that the 5AT protein is present in petals, but not in sepals, stems or leaves of G. triflora . RNA blot analysis showed that the 5AT gene is expressed only in petals and that its expression is temporally regulated during flower development coordinately with other anthocyanin biosynthetic genes. Immunohistochemical analysis demonstrated that the 5AT protein is specifically expressed in the outer epidermal cells of gentian petals and that it is localized mainly in the cytosol.  相似文献   

13.
The human intestinal cell line, CaCo-2, was used to study the effect of the n-3 fatty acid, eicosapentaenoic acid, on triacylglycerol secretion. In cells incubated with 250 microM eicosapentaenoic acid, the incorporation of [3H]glycerol into triacylglycerols secreted into the medium was decreased by 58% compared to cells incubated with 250 microM oleic acid. The incorporation of [3H]glycerol into cellular triacylglycerols was decreased 32% in cells incubated with eicosapentaenoic acid. In cells preincubated with [3H]glycerol to label existing triacylglycerols, the rates of secretion of preformed triacylglycerols were similar in response to the addition of either fatty acid. Initial uptake rates of the n-3 fatty acid were higher than for oleic acid. Both eicosapentaenoic acid and oleic acid were minimally oxidized to CO2. Oleic acid was predominantly incorporated into cellular triacylglycerols (62% vs. 47%), whereas more eicosapentaenoic acid was incorporated into cellular phospholipids (46% vs. 30%). Phospholipids of microsomes prepared from cells incubated with eicosapentaenoic acid were enriched in this fatty acid. The rate of synthesis of triacylglycerol and diacylglycerol acyltransferase activities were significantly less in microsomes prepared from cells incubated with eicosapentaenoic acid. Triacylglycerol mass secreted by CaCo-2 cells incubated with either fatty acid was similar. In CaCo-2 cells, eicosapentaenoic acid decreases the synthesis and secretion of newly synthesized triacylglycerol without decreasing the secretion of triacylglycerol mass. Modification of microsomal membrane phospholipid fatty acid composition is associated with a decrease in microsomal triacylglycerol synthesis and diacylglycerol acyltransferase activities.  相似文献   

14.
Acyl CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, a precursor of triacylglycerol. In the intestine, MGAT plays a major role in the absorption of dietary fat by catalyzing the resynthesis of triacylglycerol in enterocytes. This resynthesis is required for the assembly of lipoproteins that transport absorbed fat to other tissues. Despite intense efforts, a gene encoding an intestinal MGAT has not been found. Previously, we identified a gene encoding MGAT1, which in mice is expressed in the stomach, kidney, adipose tissue, and liver but not in the intestine. We now report the identification of homologous genes in humans and mice encoding MGAT2. Expression of the MGAT2 cDNA in either insect or mammalian cells markedly increased MGAT activity in cell membranes. MGAT activity was proportional to the level of MGAT2 protein expressed, and the amount of diacylglycerol produced depended on the concentration of MGAT substrates (fatty acyl CoA or monoacylglycerol). In humans, the MGAT2 gene is highly expressed in the small intestine, liver, stomach, kidney, colon, and white adipose tissue; in mice, it is expressed predominantly in the small intestine. The discovery of the MGAT2 gene will facilitate studies to determine the functional role of MGAT2 in fat absorption in the intestine and to determine whether blocking MGAT activity in enterocytes is a feasible approach to inhibit fat absorption and treat obesity.  相似文献   

15.
Obesity in obese-hyperglycaemic mouse is associated with an increase in number and size of adipocytes. Adipocytes from the obese mouse showed increased incorporation of [14C]acetate and[14C]glucose into triacylglycerol. This increased capacity of triacylglycerol formation was correlated with increased activities of various triacylglycerol-forming enzymes measured in the microsomal fraction of adipose tissue from obese mice. Microsomal fractions from lean and obese mice contained sn-glycerol 3-phosphate acyltransferase, phosphatidate phosphohydrolase and diacylglycerol acyltransferase. Phosphatidate phosphohydrolase was also detected in the soluble fraction. In the presence of Mg2+, the phosphatidate phsophohydrolase from the soluble and the microsomal fractions was active towards membrane-bound phosphatidate. Among the three enzymes studied here, the increase in Mg2+-dependent phosphatidate phosphohydrolase was most prominent in adipose tissue of obese mice.  相似文献   

16.
The acylglycerol content of Saccharomyces cerevisiae has been examined during cellular growth. The cells maintained a constant amount of phospholipid and diacylglycerol throughout growth. Triacylglycerol content fell in the early exponential phase of growth and then increased sharply upon entry of the culture into the stationary growth phase. Pulse-chase experiments with [1-14C]oleic acid and [2-3H]- and [1-14C]glycerol indicated that the triacylglycerol molecule was utilized for phospholipid synthesis in early exponential phase probably through a diacylglycerol intermediate. A substantial turnover of phospholipid during growth was also apparent. No role for the triacylglycerol could be found in regulating the fatty acid species of the phospholipid nor in the storage of fatty acid for energy metabolism.  相似文献   

17.
During the course of a search for cDNAs encoding plant sterol acyltransferases, an expressed sequence tag clone presenting substantial identity with yeast and animal acyl CoA:cholesterol acyltransferases was used to screen cDNA libraries from Arabidopsis and tobacco. This resulted in the isolation of two full-length cDNAs encoding proteins of 520 and 532 amino acids, respectively. Attempts to complement the yeast double-mutant are1 are2 defective in acyl CoA:cholesterol acyltransferase were unsuccessful, showing that neither gene encodes acyl CoA:cholesterol acyltransferase. Their deduced amino acid sequences were then shown to have 40 and 38% identity, respectively, with a murine acyl CoA:diacylglycerol acyltransferase and their expression in are1 are2 or wild-type yeast resulted in a strong increase in the incorporation of oleyl CoA into triacylglycerols. Incorporation was 2-3 times higher in microsomes from yeast transformed with these plant cDNAs than in yeast transformed with the void vector, clearly showing that these cDNAs encode acyl CoA:diacylglycerol acyltransferases. Moreover, during the preparation of microsomes from the Arabidopsis DGAT-transformed yeast, a floating layer was observed on top of the 100 000 g supernatant. This fraction was enriched in triacylglycerols and exhibited strong acyl CoA:diacylglycerol acyltransferase activity, whereas almost no activity was detected in the corresponding clear fraction from the control yeast. Thanks to the use of this active fraction and dihexanoylglycerol as a substrate, the de novo synthesis of 1,2-dihexanoyl 3-oleyl glycerol by AtDGAT could be demonstrated. Transformation of tobacco with AtDGAT was also performed. Analysis of 19 primary transformants allowed detection, in several individuals, of a marked increase (up to seven times) of triacylglycerol content which correlated with the AtDGAT mRNA expression. Furthermore, light-microscopy observations of leaf epidermis cells, stained with a lipid-specific dye, showed the presence of lipid droplets in the cells of triacylglycerol-overproducer plants, thus illustrating the potential application of acyl CoA:diacylglycerol acyltransferase-transformed plants.  相似文献   

18.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

19.
Triacylglycerols (TAGs) are the most important storage form of energy for eukaryotic cells. TAG biosynthetic activity was identified in the cytosolic fraction of developing peanut (Arachis hypogaea) cotyledons. This activity was NaF insensitive and acyl-coenzyme A (CoA) dependent. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final step in TAG biosynthesis that acylates diacylglycerol to TAG. Soluble DGAT was identified from immature peanuts and purified by conventional column chromatographic procedures. The enzyme has a molecular mass of 41 +/- 1.0 kD. Based on the partial peptide sequence, a degenerate probe was used to obtain the full-length cDNA. The isolated gene shared less than 10% identity with the previously identified DGAT1 and 2 families, but has 13% identity with the bacterial bifunctional wax ester/DGAT. To differentiate the unrelated families, we designate the peanut gene as AhDGAT. Expression of peanut cDNA in Escherichia coli resulted in the formation of labeled TAG and wax ester from [14C]acetate. The recombinant E. coli showed high levels of DGAT activity but no wax ester synthase activity. TAGs were localized in transformed cells with Nile blue A and oil red O staining. The recombinant and native DGAT was specific for 1,2-diacylglycerol and did not utilize hexadecanol, glycerol-3-phosphate, monoacylglycerol, lysophosphatidic acid, and lysophosphatidylcholine. Oleoyl-CoA was the preferred acyl donor as compared to palmitoyl- and stearoyl-CoAs. These data suggest that the cytosol is one of the sites for TAG biosynthesis in oilseeds. The identified pathway may present opportunities of bioengineering oil-yielding plants for increased oil production.  相似文献   

20.
1. The effects of phytohaemagglutinin and of a Ca2+ ionophore (A23187) on glycerolipid metabolism in lymphocytes from pig lymph nodes were compared (a) by studying the incorporation of [32P]Pi and [3H]glycerol, and (b) by following the redistribution of [3H]glycerol among the lipids caused by these agents in pulse-chase experiments. 2. Phytohaemagglutinin only stimulated 32P incorporation into phosphatidylinositol and, to a slight extent, phosphatidate. Removal of most of the extracellular Ca2+ somewhat decreased this response. 3. Ionophore A23187 stimulated the labelling of phosphatidate and phosphatidylinositol with 32P to a much greater extent than did phytohaemagglutinin: the increase in phosphatidate labelling, but not that of phosphatidylinositol, was almost abolished by the removal of extracellular Ca2+. 4. The combined effects of phytohaemagglutinin and ionophore appeared to be additive, rather than synergistic. 5. Treatment with ionophore A23187 somewhat decreased the total incorporation of [3H]glycerol into glycerolipids, possibly because it lowered cell ATP content. In these experiments di- and tri-acylglycerol behaved anomalously, triacylglycerol labelling being suppressed completely, whereas that of diacylglycerol was enhanced. The pulse-chase results revealed that triacylglycerol was converted into diacylglycerol in the ionophore-treated cells, and the availability of this diacylglycerol probably led to the enhanced labelling of phosphatidate and phosphatidylinositol in the these cells. 6. Thus an increase in intracellular Ca2+ concentration appeared to have three effects on glycerolipid metabolism: (a) slight inhibition of some metabolic step preceding phosphatidate synthesis, (b) inhibition of diacylglycerol acyltransferase and (c) activation of a triacylglycerol lipase. 7. In contrast, it seems likely that the only effect of phytohaemagglutinin is to stimulate phosphatidylinositol breakdown. 8. Pig polymorphonuclear leucocytes treated with ionophore A23187 showed metabolic changes that were similar to those demonstrated with lymphocytes. 9. A possible similarity is suggested between Ca2+-stimulated triacylglycerol lipase in lymphocytes and polymorphonuclear leucocytes and previous observations of enhanced triacylglycerol metabolism in stimulated cells whose metabolic functions involve membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号