首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In mouse cells transformed by a temperature-sensitive polyoma virus (Py) genome, the integrated viral genome recombines with adjacent chromosomal DNA to yield a small cyclic molecule (RmI) with defined viral and cellular components. We have cloned the cellular component (Ins), determined its sequence, and examined its distribution in normal mouse DNA. The sequence of Ins displays several homologies with that surrounding the replication origin (ori) of Py or SV40 DNA.  相似文献   

3.
K Maruyama  T Hiwasa    K I Oda 《Journal of virology》1981,37(3):1028-1043
Eight clones of flat revertants were isolated by negative selection from simian virus 40 (SV40)-transformed mouse and rat cell lines in which two and six viral genome equivalents per cell were integrated, respectively. These revertants showed either a normal cell phenotype or a phenotype intermediate between normal and transformed cells as to cellular morphology and saturation density and were unable to grow in soft agar medium. One revertant derived from SV40-transformed mouse cells was T antigen positive, whereas the other seven revertants were T antigen negative. SV40 could be rescued only from the T-antigen-positive revertant by fusion with permissive monkey cells. The susceptibility of the revertants to retransformation by wild-type SV40 was variable among these revertants. T-antigen-negative revertants from SV40-transformed mouse cells were retransformed at a frequency of 3 to 10 times higher than their grandparental untransformed cells. In contrast, T-antigen-negative revertants from SV40-transformed rat cells could not be retransformed. The arrangement of viral genomes was analyzed by digestion of cellular DNA with restriction enzymes of different specificity, followed by detection of DNA fragments containing a viral sequence and rat cells were serially arranged within the length of about 30 kilobases, with at least two intervening cellular sequences. A head-to-tail tandem array of unit length viral genomes was present in at least one insertion site in the transformed rat cells. All of the revertants had undergone a deletion(s), and only a part of the viral genome was retained in T-antigen-negative revertants. A relatively high frequency of reversion in the transformed rat cells suggests that reversion occurs by homologous recombination between the integrated viral genomes.  相似文献   

4.
5.
Several clones of SV40 transformed CV-1 cells have been characterized for the production of T- and V-antigens and for the state of viral genome. The transformed CV-1 cells failed to produce infectious virions as assayed after sonication or cocultivation and fusion with normal CV-1 cells, and were resistant to super-infection by SV40. Some clones of the transformed cells contained V-antigens. The population of V-antigen positive cells varied from 0 to 100% depending on the passage number while the T-antigen positive cells were always 100%. The virions isolated from the transformed cells were similar in morphology to complete SV40, but lighter in density than complete SV40. In one clone, a small amount of SV40 DNA was detectable in a free state while a large proportion of the DNA hybridizable with SV40 3H cRNA was linearly integrated into the cell DNA. The free SV40 DNA was noninfectious, closed circular DNA with a size smaller than infectious SV40 DNA component I. Since the cell extracts of the transformed cells contained an agent(s) which induced T- and V-antigens in normal CV-1 cells, it was suggested that the SV40 transformed CV-1 cells contained free as well as integrated defective SV40 genomes responsible for the synthesis of T- and V-antigens.  相似文献   

6.
Functional analysis of a simian virus 40 super T-antigen.   总被引:15,自引:8,他引:7       下载免费PDF全文
The SV3T3 C120 line of simian virus 40-transformed mouse cells synthesizes no large T-antigen of molecular weight 94,000 but instead a super T-antigen of molecular weight 145,000. In the accompanying paper (Lovett et al., J. Virol. 44:963-973, 1982), we showed that the integrated viral DNA segment SV3T3-20-K contains a perfect, in-phase, tandem duplication of 1.212 kilobases within the large T-antigen coding sequences. Our data suggested that this integrated template encodes mRNAs of 3.9 and 3.6 kilobases, the smaller of which directs the synthesis of the super T-antigen of molecular weight 145,000. We transfected the DNA segment SV3T3-20-K into nonpermissive rat cells and into TK- mouse L cells and analyzed the T-antigens and viral mRNAs in the transfectants; these data prove directly the coding assignments suggested previously. The super T-antigen retained the ability to induce morphological transformation, and may even transform better than the wild-type protein. It also retained the ability to bind to the cell-coded p53 protein. Transfection into permissive CV-1 cells showed that the super T-antigen encoded by SV3T3-20-K was incapable of initiating DNA replication at the viral origin. The duplication in SV3T3-20-K thus defines a mutation which separates the transformation and DNA replication functions of large T-antigen. We discuss why such mutations may be selected in transformed cells.  相似文献   

7.
UV irradiation of simian virus 40 (SV40)-transformed human and hamster cells induced them both to express a mutator phenotype and to produce SV40. The mutator could also be activated indirectly by transfecting unirradiated cells with UV-damaged calf thymus DNA. In contrast, UV-damaged exogenous DNA failed to rescue SV40 from unirradiated transformed cells. These results suggest that the expression of transforming viruses and of cellular mutator functions is regulated by at least partially independent mechanisms. Unlike the activation of a cellular mutator phenotype, the rescue of SV40 from virus-transformed mammalian cells by UV light might require that the integrated viral DNA and/or specific cellular sequences are directly damaged.  相似文献   

8.
Integration and excision of SV40 DNA from the chromosome of a transformed cell   总被引:55,自引:0,他引:55  
The single insertion of SV40 DNA present in the genome of the 14B line of transformed rat cells has been cloned in procaryotic vectors. Analysis of the clones reveals a complex arrangement of viral sequences in which a small tract of DNA is inverted with respect to the major insertion. The nucleotide sequences at the two junctions show sharp transitions between cellular and viral sequences. The sequences which flank the viral insertion have been used as probes to clone the corresponding genomic sequences from the DNA of untransformed rat cells. Analysis of the structure of these clones shows that a rearrangement of cellular sequences has occurred, presumably as a consequence of integration. When 14B cells are fused with uninfected simian cells a heterogeneous set of low molecular weight superhelical DNAs containing viral sequences is generated. These have been cloned in procaryotic vectors and their structures have been analyzed. All of them span the origin of SV40 DNA replication and are colinear with various segments of the integrated viral DNA and its flanking sequences. The shorter molecules contain part of the integrated viral genome and cellular sequences from one side of the insertion. They were therefore generated by recombination between the viral DNA and its flanking cellular sequences. The longer molecules contain cellular sequences from both sides of the insertion as well as an entire copy of the integrated viral DNA. They were therefore generated by recombination between the flanking cellular sequences. These results argue strongly against the involvement of specific excision enzymes, and rather are discussed in terms of a model involving replication of the integrated viral DNA followed by recombination for release of integrated viral sequences.  相似文献   

9.
Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.  相似文献   

10.
11.
DNA fragments containing the integrated viral DNA present in the simian virus 40 (SV40)-transformed rat cell lines SVRE9 and SVRE17 were cloned in procaryotic vectors, and the DNA sequences linking SV40 and cell DNA were determined. Comparison of the DNA sequences at the SV40-cell junctions in SVRE9 and SVRE17 cells with those of a previously characterized viral insertion from SV14B cells shows that no specific viral or cellular sequences occur at SV40-cell junctions and that the cellular DNA sequences adjacent to integrated SV40 DNA do not display the direct repeat structure characteristic of transposons and retrovirus proviruses.  相似文献   

12.
Many types of human cells cultured in vitro are generally semipermissive for simian virus 40 (SV40) replication. Consequently, subpopulations of stably transformed human cells often carry free viral DNA, which is presumed to arise via spontaneous excision from an integrated DNA template. Stably transformed human cell lines that do not have detectable free DNA are therefore likely to harbor harbor mutant viral genomes incapable of excision and replication, or these cells may synthesize variant cellular proteins necessary for viral replication. We examined four such cell lines and conclude that for the three lines SV80, GM638, and GM639, the cells did indeed harbor spontaneous T-antigen mutants. For the SV80 line, marker rescue (determined by a plaque assay) and DNA sequence analysis of cloned DNA showed that a single point mutation converting serine 147 to asparagine was the cause of the mutation. Similarly, a point mutation converting leucine 457 to methionine for the GM638 mutant T allele was found. Moreover, the SV80 line maintained its permissivity for SV40 DNA replication but did not complement the SV40 tsA209 mutant at its nonpermissive temperature. The cloned SV80 T-antigen allele, though replication incompetent, maintained its ability to transform rodent cells at wild-type efficiencies. A compilation of spontaneously occurring SV40 mutations which cannot replicate but can transform shows that these mutations tend to cluster in two regions of the T-antigen gene, one ascribed to the site-specific DNA-binding ability of the protein, and the other to the ATPase activity which is linked to its helicase activity.  相似文献   

13.
Events preceding stable integration of SV40 genomes in a human cell line   总被引:2,自引:0,他引:2  
We have examined the organization of integrated SV40 sequences in an uncloned population of a transformed human fibroblast cell line. Somatic cell hybrids between mouse B82 cells and human GM847 cells were examined for SV40 T-antigen expression and individual human chromosome presence. This analysis revealed that a functional SV40 genome is located on human chromosome 7. Restriction endonuclease digestion followed by blot hybridization of the parental human cell line revealed that it contains multiple normal and defective SV40 copies integrated into the host genome in tandem. A similar analysis of several T-ag+ hybrid cell lines indicated that the integrated viral sequences in different hybrid cell lines (thus in different cells of the original population) are very closely related but not always identical. Analysis of subclones of GM847 also revealed such differences. Based upon these results, we postulate that following the initial integration event, viral as well as the flanking host DNA sequences become unstable and are subject to deletions and rearrangements. This short-lived structural instability is followed by highly stable integration of SV40 which is maintained in these cells or their hybrid derivatives for at least hundreds of cell generations.  相似文献   

14.
Nonpermissive 3T3 cells were infected with purified superhelical simian virus 40 (SV40) deoxyribonucleic acid I (DNA I). One hour after infection, approximately 60% of the intracellular SV40 DNA was converted to relaxed forms. One day after infection, all intracellular SV40 DNA was present as slow-sedimenting material, and no SV40 DNA I was detectable. At 2 days after infection there appeared viral DNA sequences cosedimenting with cellular DNA during alkaline velocity centrifugation. Furthermore, by both alkaline equilibrium gradient centrifugation and by DNA-ribonucleic acid hybridization analysis, covalent linkage of viral DNA sequences to cellular DNA was demonstrated. Integration of SV40 DNA into cellular DNA did not appear to require DNA synthesis, although DNA synthesis followed by mitotic division of the cells enhanced the amount of viral DNA integrated. Based on data obtained by two different methods, it was calculated that 1,100 to 1,200 SV40 DNA equivalents must be integrated per cell by 48 hr after infection.  相似文献   

15.
Extracts from several simian virus 40 (SV40)-transformed nonproducer cells were prepared by the hot-phenol procedure normally used to extract cellular RNA. These extracts contained SV40 infectious units. Part of the infectious units were identified as SV40 form I DNA molecules. The results of reconstruction experiments suggest that SV40 form I DNA is extractable by the hot-phenol procedure because of its fast renaturation rate. The significance of the presence of free viral DNA in nonproducer transformed cells is discussed.  相似文献   

16.
M Hartl  T Willnow    E Fanning 《Journal of virology》1990,64(6):2884-2894
Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA.  相似文献   

17.
18.
Late after infection of permissive monkey cells by simian virus 40 (SV40), large amounts of SV40 DNA (30,000 to 220,000 viral genome equivalents per cell) can be isolated with the high-molecular-weight fraction of cellular DNA. Hirai and Defendi (J. Virol.9:705-707, 1972) and H?lzel and Sokol (J. Mol. Biol. 84:423-444, 1974) suggested that this SV40 DNA is covalently integrated into the cellular DNA. However, our data indicate that the high-molecular-weight viral DNA is composed of tandem, "head-to-tail" repeats of SV40 DNA and that very little, if any, of this viral DNA is covalently joined to the cellular DNA. This was deduced from the following experimental findings. The size of the SV40 DNA associated with the high-molecular-weight cellular DNA fraction is greater than 45 kilobases, based on its electrophoretic mobility in agarose gels. In this form the SV40 DNA did not produce heteroduplex structures with a marker viral DNA (an SV40 genome with a characteristic deletion and duplication). After the high-molecular-weight DNA was digested with EcoRI or HpaII endonucleases, enzymes which cleave SV40 DNA once, more than 95% of the SV40 DNA migrated as unit-length linear molecules and, after hybridization with the marker viral DNA, the expected heteroduplex structures were easily detected. Digestion of the high-molecular-weight DNA fraction with restriction endonucleases that cleave cellular, but not SV40. DNA did not alter the electrophoretic mobility of the polymeric SV40 DNA, nor did it give rise to molecules that form heteroduplex structures with the marker viral DNA. Polymeric SV40 DNA molecules produced after coinfection by two physically distinguishable SV40 genomes contain only a single type of genome, suggesting that they arise by replication rather than by recombination. The polymeric form of SV40 DNA is highly infectious for CV-1P monolayers (6.5 X 10(4) PFU per microgram of SV40 DNA), yielding virtually exclusively normal, covalently closed circular, monomer-length DNA. Quite clearly these cells have an efficient mechanism for generating monomeric viral DNA from the SV40 DNA polymers.  相似文献   

19.
We analyzed the state of the genomic DNA of the papovavirus SV40 in human keratinocytes as viral-infected cells gradually acquired a transformed phenotype over time. Initially, the vast majority of the viral DNA is maintained either in a full-length supercoiled form or as truncated subgenomic fragments with little evidence of integration. However, analyses of clonal populations revealed great heterogeneity and instability of the viral DNA, and we were able to isolate one clonal subpopulation in which integrated forms of the virus appeared to predominate. Similarly, uncloned populations eventually ceased production of the "free" viral DNA after several years in culture and instead came to display tandemly repeated SV40 copies at a single host integration site. Interestingly, Bg1 II digestion of host DNA generated restriction fragments containing the integrated SV40 DNA, which were of differing sizes in cultures at the 144th vs the 163rd serial passage suggesting modification or rearrangement of sequences at or near the integration site. Host sequences flanking the integrated viral DNA at the 163rd serial passage have been isolated on restriction fragments generated by Eco RI, Bam HI, and Hpa II digestion. These analyses suggest that the integrated virus is linearized near the Bg1 I site and contains a large deletion in the SV40 early region at one of the viral-host junctions.  相似文献   

20.
Treatment of African green monkey kidney CV-1 cells with human alpha interferons before infection with simian virus 40 (SV40) inhibited the accumulation of SV40 mRNAs and SV40 T-antigen (Tag). This inhibition persisted as long as the interferons were present in the medium. SV40-transformed human SV80 cells and mouse SV3T3-38 cells express Tag, and interferon treatment of these cells did not affect this expression. SV80 and SV3T3-38 cells which had been exposed to interferons were infected with a viable SV40 deletion mutant (SV40 dl1263) that codes for a truncated Tag. Exposure to interferons inhibited the accumulation of the truncated Tag (specified by the infecting virus) but had no significant effect on the accumulation of the endogenous Tag (specified by the SV40 DNA integrated into the cellular genome). The level of Tag in SV40-transformed mouse SV101 cells was not significantly decreased by interferon treatment. SV40 was rescued from SV101 cells and used to infect interferon-treated and control African green monkey kidney Vero cells. Tag accumulation was inhibited in the cells which had been treated with interferons before infection. Our data demonstrate that even within the same cell the interferon system can discriminate between expression of a gene in the SV40 viral genome and expression of the same gene integrated into a host chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号