首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspension cultures of Ammi majus L. cells produce various linear furanocoumarins in response to treatment with elicitor preparations from either Alternaria carthami Chowdhury or Phytophthora megasperma f.sp. glycinea. Microsomes which were isolated from these cells 14 h after addition of the elicitor efficiently catalyzed the conversion of demethyl [3-14C]suberosin into labelled (+)marmesin in the presence of NADPH and oxygen. In contrast to the chemical cyclization of demethylsuberosin by m-chloroperoxybenzoic acid, the reaction catalyzed by the marmesin synthase proceeded rapidly and no intermediate demethylsuberosin epoxide could be recovered. Significant blue-light-reversible inhibition by carbon monoxide and inhibition by various chemicals known to inhibit reactions dependent on cytochrome P450 suggested that the marmesin synthase is a cytochrome-P450-dependent monooxygenase. Upon prolonged incubation, a subsequent major labelled product originated from (+)marmesin, which was identified as psoralen. The psoralen synthase was also characterized as a cytochrome-P450-dependent monooxygenase. Both the marmesin synthase and the psoralen synthase, as well as enzymes catalyzing the formation of demethylsuberosin and O-prenylumbelliferone from umbelliferone and dimethylallyl diphosphate, were associated with the endoplasmic reticulum in Ammi majus cells and their activities were concomitantly induced by elicitor treatment of the cells. We propose that in vivo these enzymes are active in the lumen of the endoplasmic reticulum from where the furanocoumarin phytoalexins are excreted into the cell culture fluid.  相似文献   

2.
The mechanism of signal transduction used by a large number of extracellular regulatory molecules involves hydrolysis and resynthesis of phosphoinositides. We recently demonstrated that during stimulation by thyrotropin-releasing hormone of rat pituitary (GH3) cells phosphatidylinositol (PtdIns) resynthesis occurs within the plasma membrane as well as the endoplasmic reticulum (Imai, A., and Gershengorn, M. C. (1987) Nature, 325, 726-728). In this report, we have studied regulation of PtdIns synthase (CDP-diglyceride-inositol phosphatidyltransferase, EC 2.7.8.11) activities associated with plasma membranes and endoplasmic reticulum isolated from GH3 cells. Exogenously added PtdIns noncompetitively inhibited membrane-associated and solubilized PtdIns synthase activities by up to 84 to 91%; half-maximal inhibition occurred between 0.03 and 0.1 mM PtdIns. Similar inhibition of PtdIns synthase activities were observed when PtdIns content of both membrane fractions was increased in vivo in intact GH3 cells prior to assay in vitro. These findings demonstrate that PtdIns synthase activities associated with plasma membrane and endoplasmic reticulum fractions isolated from GH3 cells are inhibited by the product, PtdIns. Because PtdIns levels decrease and PtdIns resynthesis is activated in both membrane fractions during stimulation of GH3 cells by thyrotropin-releasing hormone, it seems likely that activation of PtdIns synthase(s) during cell stimulation occurs by release of this enzyme(s) from inhibition by its product.  相似文献   

3.
A full length cDNA encoding a new cytochrome P450-dependent fatty acid hydroxylase (CYP94A5) was isolated from a tobacco cDNA library. CYP94A5 was expressed in S. cerevisiae strain WAT11 containing a P450 reductase from Arabidopsis thaliana necessary for catalytic activity of cytochrome P450 enzymes. When incubated for 10 min in presence of NADPH with microsomes of recombinant yeast, 9,10-epoxystearic acid was converted into one major metabolite identified by GC/MS as 18-hydroxy-9,10-epoxystearic acid. The kinetic parameters of the reaction were Km,app = 0.9 +/- 0.2 microM and Vmax,app = 27 +/- 1 nmol x min(-1) x nmol(-1) P450. Increasing the incubation time to 1 h led to the formation of a compound identified by GC/MS as 9,10-epoxy-octadecan-1,18-dioic acid. The diacid was also produced in microsomal incubations of 18-hydroxy-9,10-epoxystearic acid. Metabolites were not produced in incubations with microsomes of yeast transformed with a control plasmid lacking CYP94A5 and their production was inhibited by antibodies raised against the P450 reductase, demonstrating the involvement of CYP94A5 in the reactions. The present study describes a cytochrome P450 able to catalyze the complete set of reactions oxidizing a terminal methyl group to the corresponding carboxyl. This new fatty acid hydroxylase is enantioselective: after incubation of a synthetic racemic mixture of 9,10-epoxystearic acid, the chirality of the residual epoxide was 40/60 in favor of 9R,10S enantiomer. CYP94A5 also catalyzed the omega-hydroxylation of saturated and unsaturated fatty acids with aliphatic chain ranging from C12 to C18.  相似文献   

4.
The endoplasmic reticulum is a major site of localization for eukaryotic cytochrome P-450 mixed-function oxidase complexes. Previous studies have shown that the microsomal forms of P-450 insert into the membrane via their hydrophobic amino terminus through the signal recognition particle-dependent pathway. We have examined the insertion of bovine 17 alpha-hydroxylase (P45017 alpha) into the endoplasmic reticulum of COS 1 cells to evaluate the functional role of its hydrophobic amino-terminal sequence and membrane insertion. An NH2-terminal truncated protein, P450 delta 2-17, which lacked amino acids 2-17 was expressed in COS 1 cells, subcellular fractions were isolated, and P450 delta 2-17 was localized by immunoblot analysis. Compared to the full-length P45017 alpha, the NH2-terminal truncation resulted in a 2.5-fold decrease in P45017 alpha protein recovered with the microsomal fraction, 50% of which was an integral membrane protein as defined by resistance to Na2CO3 extraction. Despite correct membrane localization, P450 delta 2-17 was not a functional enzyme in COS 1 cells. A CO difference spectrum of microsomes containing P450 delta 2-17 did not give a typical 450 nm absorbance. We conclude that the hydrophobic amino terminus is required for the expression of a functionally competent P45017 alpha in COS 1 cells and suggest that the insertion of the amino terminus into the membrane is necessary for the folding of this protein into its correct structural form.  相似文献   

5.
6.
1,12-Dodecanedioic acid, the end-product of omega-hydroxylation of lauric acid, stimulates in a concentration dependent manner, phosphatidylethanolamine synthesis via ethanolamine-specific phospholipid base exchange reaction in rat liver endoplasmic reticulum. On the other hand, administration to rats of 10-undecynoic acid, a specific inhibitor of omega-hydroxylation reaction catalyzed by cytochrome P450 4A1, inhibits the ethanolamine-specific phospholipid base exchange activity by 30%. This is accompanied by a small but significant decrease in phosphatidylethanolamine content in the endoplasmic reticulum and inhibition of cytochrome P450 4A1. On the basis of these results it can be proposed that a functional relationship between cytochrome P450 4A1 and phosphatidylethanolamine synthesis exists in rat liver. Cytochrome P450 4A1 modulates the cellular level of lauric acid, an inhibitor of phospholipid synthesis. In turn, ethanolamine-specific phospholipid base exchange reaction provides molecular species of phospholipids, containing mainly long-chain polyunsaturated fatty acid moieties, required for the optimal activity of cytochrome P450 4A1.  相似文献   

7.
Reactive oxygen species (ROS), possibly produced during the metabolic conversion of benzo(a)pyrene (B[a]P), could be involved in B[a]P-induced genotoxicity and, eventually, carcinogenicity. Therefore, ROS formation by rat lung and liver microsomes was studied in vitro by electron spin resonance (ESR/EPR) spectrometry. B[a]P-mediated generation of ROS was detected in incubations with rat lung, but not with liver microsomes. Inhibition of cytochrome P450 (CYP450) by the non isoform-specific inhibitor SKF-525A resulted in a complete inhibition of B[a]P-dependent ROS formation, whereas ROS formation was not affected by inhibition of prostaglandin H synthase by indomethacin. Subsequently, bulky DNA adduct formation and 8-oxo-dG levels after a single oral dose of B[a]P were examined in vivo in rat lung and liver, in combination with urinary excretion of 8-oxodG. B[a]P exposure resulted in increased urinary 8-oxo-dG levels. On the contrary, 8-oxo-dG levels decreased in liver and lung after B[a]P exposure. Bulky DNA adducts reached higher levels and were more persistent in rat lung than in liver. These results indicate that ROS are generated during the CYP450 dependent metabolism of B[a]P, particularly in the rat lung, but this does not necessarily result in increased levels of oxidative DNA damage in vivo, possibly by induction of DNA repair mechanisms.  相似文献   

8.
Reactive oxygen species (ROS), possibly produced during the metabolic conversion of benzo(a)pyrene (B[a]P), could be involved in B[a]P-induced genotoxicity and, eventually, carcinogenicity. Therefore, ROS formation by rat lung and liver microsomes was studied in vitro by electron spin resonance (ESR/EPR) spectrometry. B[a]P-mediated generation of ROS was detected in incubations with rat lung, but not with liver microsomes. Inhibition of cytochrome P450 (CYP450) by the non isoform-specific inhibitor SKF-525A resulted in a complete inhibition of B[a]P-dependent ROS formation, whereas ROS formation was not affected by inhibition of prostaglandin H synthase by indomethacin. Subsequently, bulky DNA adduct formation and 8-oxo-dG levels after a single oral dose of B[a]P were examined in vivo in rat lung and liver, in combination with urinary excretion of 8-oxodG. B[a]P exposure resulted in increased urinary 8-oxo-dG levels. On the contrary, 8-oxo-dG levels decreased in liver and lung after B[a]P exposure. Bulky DNA adducts reached higher levels and were more persistent in rat lung than in liver. These results indicate that ROS are generated during the CYP450 dependent metabolism of B[a]P, particularly in the rat lung, but this does not necessarily result in increased levels of oxidative DNA damage in vivo, possibly by induction of DNA repair mechanisms.  相似文献   

9.
Abstract: In contrast to the predominantly participate, Ca2+/calmodulin-dependent nitric oxide (NO) synthase in endothelial cells, the corresponding neuronal isoenzyme is considered to be mainly soluble, presumably owing to the lack of a posttranslational myristoylation. However, preliminary findings from this and other laboratories suggest that a substantial portion of the neuronal NO synthase activity may in fact be membrane bound. We have therefore investigated the distribution of this enzyme among subcellular fractions of the rat and rabbit cerebellum in more detail. Up to 60% of the total NO synthase activity was found in the particulate fraction and, according to density gradient ultracentrifugation, associated mainly with the endoplasmic reticulum fraction. There was no apparent difference between the soluble and particulate enzymes with respect to their specific activity, Ca2+ and pH dependency, inhibitor sensitivity, or immunoreactivity, suggesting that both rat and rabbit cerebella contain a single Ca2+/calmodulin-dependent NO synthase. The inhibition by the cytochrome P450 inhibitor SKF-525A of the NO synthase activity in these subcellular fractions (IC50= 90 μ M ) and the fact that mammalian cytochrome P450 enzymes are endoplasmic reticulum-bound proteins support the notion that the cerebellar NO synthase is a cytochrome P450-type hemoprotein. Moreover, the aforementioned findings suggest that posttranslational myristoylation may not be the only factor determining the intracellular localization of NO synthase.  相似文献   

10.
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+/Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45Ca2+) accumulation in the microsomes mediated by Mg2+/Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase.  相似文献   

11.
Exposure of MCF-7 breast cancer cells to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes an elevated cytochrome P450 content and a marked increase in the microsomal hydroxylation of 17 beta-estradiol (E2) at the C-2, C-4, C-15 alpha, and C-6 alpha positions. In this study we investigated the involvement of cytochromes P450 of the 1A gene subfamily in this metabolism of E2. Hydroxylation at each of these four positions of E2 was inhibited by P450 1A-subfamily inhibitors, alpha-naphthoflavone, benzo[a]pyrene, and 7-ethoxyresorufin. Northern blots showed that treatment of MCF-7 cells with TCDD resulted in production of the 2.6-kb CYP1A1 mRNA, but not the 3.0-kb CYP1A2 mRNA. Immunoblot analyses with anti-P450 1A antibodies confirmed the production of P450 1A1 protein in TCDD-treated MCF-7 cells. Anti-rat P450 1A IgG inhibited the hydroxylation of E2 at C-2, C-15 alpha, and C-6 alpha, but not hydroxylation at C-4. E2 hydroxylation by human cytochromes P450 1A1 and P450 1A2 was assessed in experiments with microsomes from Saccharomyces cerevisiae after transformation with cDNAs encoding the two cytochromes. The major hydroxylase activities of expressed human P450 1A1 were at the C-2, C-15 alpha, and C-6 alpha positions of E2; expressed human P450 1A2 catalyzed hydroxylation predominately at C-2. While both expressed P450s 1A1 and 1A2 had minor hydroxylase activities at the C-4 position, neither catalyzed a low-Km hydroxylation at C-4 similar to that observed with microsomes from TCDD-treated MCF-7 cells. These results provide strong evidence that P450 1A1 catalyzes the hydroxylations of E2 at the C-2, C-15 alpha, and C-6 alpha in incubations with microsomes from TCDD-treated MCF-7 cells, but suggest TCDD may also induce a cytochrome P450 E2 4-hydroxylase that is distinct from P450 1A1 or P450 1A2.  相似文献   

12.
We have examined differences in post-translational regulation between rat liver ethanol-inducible cytochrome P450 2E1 (CYP2E1) and phenobarbital-inducible CYP2B1 using hepatocyte cultures and subcellular fractions, prepared from starved and acetone-treated rats. The intracellular degradation of CYP2E1 was rapid (approximate t1/2 = 9 h) and increased by glucagon treatment of the cells in an isozyme-specific manner, whereas CYP2B1 degradation in the same cells, was slower (t1/2 = 21 h). The glucagon effect on CYP2E1 degradation was abolished by either cycloheximide treatment of cells, indicating the involvement of protein components with rapid turnover, or by lowering of the culture temperature to 23 degrees C. The rapid phase of CYP2E1 degradation was not influenced by inhibitors of the autophagosomal/lysosomal pathway. In vitro experiments with isolated liver microsomes revealed the presence of a Mg(2+)-ATP-activated proteolytic system active on CYP2E1, previously modified by phosphorylation on Ser-129 or denatured by reactive metabolites formed from carbon tetrachloride. Imidazole, a CYP2E1 substrate, specifically inhibited the rapid intracellular degradation of CYP2E1 and also prevented phosphorylation and subsequent proteolysis in isolated microsomes. In contrast, no proteolysis of CYP2B1 occurred under the conditions used. The microsomal Mg(2+)-ATP-dependent CYP2E1 proteolysis could not be solubilized with high salt and 0.05% sodium cholate, indicating the action of membrane-integrated protease(s). Subfractionation of microsomes revealed that the Mg(2+)-ATP-dependent proteolytic system active on CYP2E1 was present in both rough and smooth endoplasmic reticulum. It is suggested that hepatic cytochromes P450 are degraded both in a bulk process, according to the autophagosomal/lysosomal pathway and more rapidly, in a hormone- and substrate-regulated fashion, by a specific proteolytic system in the endoplasmic reticulum, active on physiologically or exogenously modified molecules.  相似文献   

13.
It has been proposed that the UDP-Glc:glycoprotein glucosyltransferase, an endoplasmic reticulum enzyme that only glucosylates improperly folded glycoproteins forming protein-linked Glc1Man7-9-GlcNAc2 from the corresponding unglucosylated species, participates together with lectin- like chaperones that recognize monoglucosylated oligosaccharides in the control mechanism by which cells only allow passage of properly folded glycoproteins to the Golgi apparatus. Trypanosoma cruzi cells were used to test this model as in trypanosomatids addition of glucosidase inhibitors leads to the accumulation of only monoglucosylated oligosaccharides, their formation being catalyzed by the UDP- Glc:glycoprotein glucosyltransferase. In all other eukaryotic cells the inhibitors produce underglycosylation of proteins and/or accumulation of oliogosaccharides containing two or three glucose units. Cruzipain, a lysosomal proteinase having three potential N-glycosylation sites, two at the catalytic domain and one at the COOH-terminal domain, was isolated in a glucosylated form from cells grown in the presence of the glucosidase II inhibitor 1-deoxynojirimycin. The oligosaccharides present at the single glycosylation site of the COOH-terminal domain were glucosylated in some cruzipain molecules but not in others, this result being consistent with an asynchronous folding of glycoproteins in the endoplasmic reticulum. In spite of not affecting cell growth rate or the cellular general metabolism in short and long term incubations, 1-deoxynojirimycin caused a marked delay in the arrival of cruzipain to lysosomes. These results are compatible with the model proposed by which monoglucosylated glycoproteins may be transiently retained in the endoplasmic reticulum by lectin-like anchors recognizing monoglucosylated oligosaccharides.  相似文献   

14.
Several P450 enzymes localized in the endoplasmic reticulum and thought to be involved primarily in xenobiotic metabolism, including mouse and rat CYP1A1 and mouse CYP1A2, have also been found to translocate to mitochondria. We report here that the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces enzymatically active CYP1A4/1A5, the avian orthologs of mammalian CYP1A1/1A2, in chick embryo liver mitochondria as well as in microsomes. P450 proteins and activity levels (CYP1A4-dependent 7-ethoxyresorufin-O-deethylase and CYP1A5-dependent arachidonic acid epoxygenation) in mitochondria were 23-40% of those in microsomes. DHET formation by mitochondria was twice that of microsomes and was attributable to a mitochondrial soluble epoxide hydrolase as confirmed by Western blotting with antiEPHX2, conversion by mitochondria of pure 11,12 and 14,15-EET to the corresponding DHETs and inhibition of DHET formation by the soluble epoxide hydrolase inhibitor, 12(-3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). TCDD also suppressed formation of mitochondrial and microsomal 20-HETE. The findings newly identify mitochondria as a site of P450-dependent arachidonic acid metabolism and as a potential target for TCDD effects. They also demonstrate that mitochondria contain soluble epoxide hydrolase and underscore a role for CYP1A in endobiotic metabolism.  相似文献   

15.
We have compared the characteristics of glucose-6-phosphatase (EC 3.1.3.9) in the envelope of purified nuclei and microsomes from rat liver. The latency of mannose-6-P hydrolysis, permeability to EDTA, and susceptibility of the enzyme to protease-mediated inactivation all indicated that the permeability barrier defined by the envelope in situ is significantly disrupted in isolated nuclei (i.e. in vitro). Latency of mannose-6-P hydrolysis was demonstrated to provide a quantitative measure of the degree of nuclear membrane disruption. Electron micrographs confirmed the existence of substantial regions of the envelope in vitro where the permeability barrier to EDTA was intact (i.e. an "intact component"). The kinetics of glucose-6-phosphatase catalyzed by the intact component was obtained by subtracting the contribution of enzyme in disrupted regions from the total enzymic activity of untreated nuclei. The characteristics of glucose-6-phosphatase in intact and fully disrupted membranes of nuclei were indistinguishable from microsomes with respect to (a) the kinetics of glucose-6-P hydrolysis, (b) the effects of incubations with mannose-6-P, N-ethylmaleimide, and protease from Bacillus amyloliquefaciens, (c) the extremely high latency of carbamyl phosphate:glucose phosphotransferase activity, and (d) both the patterns of response of activity and the change in latency of glucose-6-phosphatase induced by fasting, experimental diabetes, and cortisol injection. Our results show clearly that apparent differences in the glucose-6-phosphatase activity of untreated preparations of nuclei and microsomes are simply expressions of significant differences in the degree of intactness of their respective permeability barriers. Since flattened cisternae, characteristic of the rough endoplasmic reticulum in situ, are preserved in intact regions of the envelope of isolated nuclei, the present findings constitute the most direct and definitive evidence to date that the properties of glucose-6-phosphatase in the endoplasmic reticulum in situ are faithfully reproduced with intact microsomes.  相似文献   

16.
Identification of cytochrome P450IA2 as a human autoantigen   总被引:2,自引:0,他引:2  
Autoantibodies occurring in a patient with idiopathic autoimmune type chronic active hepatitis (CAH) were found to react with purified rabbit cytochrome P450IA2 and to a much lesser extent with P450IA1. Both cytochrome P450s are known to be inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the rabbit, and the expression of the microsomal protein recognized by the patient serum was induced in adult rabbit livers after treatment with TCDD. This protein is only weakly detected in liver microsomes from neonatal rabbits exposed to TCDD in utero, which is consistent with the age-dependent induction of P450IA2 by TCDD. The serum specifically reacted with a protein of similar size in microsomes prepared from COS-1 cells transfected with an expression vector containing the full length human P450IA2 cDNA. This reactivity was not detected in the cells transfected with the vector alone, indicating that the antibody recognizes human P450IA2. In addition, the serum extensively inhibited 7-ethoxyresorufin O-deethylation catalyzed by isolated human liver microsomes. This catalytic activity is associated with class IA P450s in other species. A screen of sera from patients with various hepatic and nonhepatic diseases indicates that the autoantibody to P450IA2 occurs rarely in CAH. Cytochrome P450IA2 becomes the third P450 identified as an autoantigen in inflammatory liver diseases.  相似文献   

17.
Electron microscope cytochemical localization of glucose-6-phosphatase in the developing hepatocytes of fetal and newborn rats indicates that the enzyme appears simultaneously in all the rough endoplasmic reticulum of a cell, although asynchronously within the hepatocyte population as a whole. To confirm that the pattern of cytochemical deposits reflects the actual distribution of enzyme sites, a method to subfractionate rough endoplasmic reticulum was developed. The procedure is based on the retention of the cytochemical reaction product (precipitated lead phosphate) within freshly prepared rough microsomes reacted in vitro with glucose-6-phosphate and lead ions. Lead phosphate increases the density of the microsomes which have glucose-6-phosphatase activity and thereby makes possible their separation from microsomes lacking the enzyme; separation is obtained by isopycnic centrifugation on a two-step density gradient. The procedure was applied to rough microsomes isolated from rats at several stages during hepatocyte differentiation and the results obtained agree with those given by cytochemical studies in situ. Before birth, when only some of the cells react positively for glucose-6-phosphatase, only a commensurate proportion of the rough microsome fraction can be rendered dense by the enzyme reaction. At the time of birth and in the adult, when all cells react positively, practically all microsomes acquire deposit and become dense after reaction. Thus, the results of the microsome subfractionation confirm the cytochemical findings; the enzyme is evenly distributed throughout all the endoplasmic reticulum of a cell and there is no regional differentiation within the rough endoplasmic reticulum with respect to glucose-6-phosphatase. These findings suggest that new components are inserted molecule-by-molecule into a pre-existing structural framework. The membranes are thus mosaics of old and new molecules and do not contain large regions of entirely "new" membrane in which all of the components are newly synthesized or newly assembled.  相似文献   

18.
19.
cDNAs encoding three cytochrome P-450 enzymes were cloned from a rabbit kidney cDNA library. These three cDNAs exhibit greater than 90% nucleotide sequence identity across the coding region. This degree of sequence identity is also seen with P450IVA4, an enzyme that catalyzes the omega-hydroxylation of prostaglandins and that is elevated during pregnancy and induced by progesterone in rabbit lung. The 3' untranslated regions of the three cDNAs display very little sequence identity, suggesting that they are the products of distinct genes. The predicted amino acid sequences derived from each cDNA and for P450IVA4 exhibit about 85% identity. Each cDNA was inserted into an expression vector for transient transfection of COS-1 cells. The transfected cells each expressed a protein recognized by antibodies to P450IVA4. Microsomes isolated from the cells transfected with each cDNA efficiently catalyzed the omega-hydroxylation of lauric acid with rates that greatly exceed that catalyzed by microsomes isolated from the host cell line. One of the cDNAs encodes an enzyme that omega-hydroxylates prostaglandin A1; however, the specific activity was 2 orders of magnitude lower than that for lauric acid. Our results indicate that the substrate selectivity of the kidney P-450s encoded by these cDNAs is distinct from that of the lung P450IVA4 and that multiple enzymes comprise P-450 class IVA in the rabbit.  相似文献   

20.
We studied mefloquine metabolism in cells and microsomes isolated from human and animal (monkey, dog, rat) livers. In both hepatocytes and microsomes, mefloquine underwent conversion to two major metabolites, carboxymefloquine and hydroxymefloquine. In human cells and microsomes these metabolites only were formed, as already demonstrated in vivo, while in other species several unidentified metabolites were also detected. After a 48 hr incubation with human and rat hepatocytes, metabolites accounted for 55-65% of the initial drug concentration, whereas in monkey and dog hepatocytes, mefloquine was entirely metabolized after 15 and 39 hrs, respectively. The consumption of mefloquine was less extensive in microsomes, and unchanged drug represented 60% (monkey) to 85-100% (human, dog, rat) of the total radioactivity after 5 hr incubations. The involvement of the cytochrome P450 3A subfamily in mefloquine biotransformation was suggested by several lines of evidence. Firstly, mefloquine metabolism was strongly increased in hepatic microsomes from dexamethasone-pretreated rats, and also in human and rat hepatocytes after prior treatment with a cytochrome P450 3A inducer. Secondly, mefloquine biotransformation in rifampycin-induced human hepatocytes was inhibited in a concentration-dependent manner by the cytochrome P450 3A inhibitor ketoconazole and thirdly, a strong correlation was found between erythromycin-N-demethylase activity (mediated by cytochrome P450 3A) and mefloquine metabolism in human microsomes (r=0.81, P < 0.05, N=13). Collectively, these findings concerning the role of cytochrome P450 3A in mefloquine metabolism may have important in vivo consequences especially with regard to the choice of agents used in multidrug antimalarial regimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号