首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sex-specific differences are apparent in the methylation patterns of H19 and Igf2 imprinted genes in embryonic germ cells (EGCs) derived from 11.5 or 12.5 days post coitum (dpc) primordial germ cells (PGCs). Here we studied whether these differences are associated either with the sex chromosome constitution of the EGCs or with the sex of the genital ridge (testis versus ovary) from which the PGCs were isolated. For this purpose we derived pluripotent EGC lines from sex-reversed embryos, either XY embryos deleted for Sry (XY(Tdym1)) or XX embryos carrying an Sry transgene. Southern blotting of the EGC DNA was used to analyze the differentially methylated regions of Igf2 and H19. The analysis revealed that both genes were more methylated in EGCs with an XY sex chromosome constitution than in those with an XX sex chromosome constitution, irrespective of the phenotypic sex of the genital ridge from which the EGCs had been derived. We conclude that the sex-specific methylation is intrinsic and cell-autonomous, and is not due to any influence of the genital ridge somatic cells upon the PGCs.  相似文献   

3.
4.
5.
Many developmental control genes contain paused RNA polymerase II (Pol II) and are thereby "poised" for rapid and synchronous activation in the early Drosophila embryo. Evidence is presented that Polycomb group (PcG) repressors can influence paused Pol II. ChIP-Seq and GRO-Seq assays were used to determine the genome-wide distributions of Pol II, H3K27me3, and H3K4me3 in extra sex combs (esc) mutant embryos. ESC is a key component of the Polycomb repressive complex 2 (PRC2), which mediates H3K27me3 modification. Enhanced Pol II occupancy is observed for thousands of genes in esc mutant embryos, including genes not directly regulated by PRC2. Thus, it would appear that silent genes lacking promoter-associated paused Pol II in wild-type embryos are converted into "poised" genes with paused Pol II in esc mutants. We suggest that this conversion of silent genes into poised genes might render differentiated cell types susceptible to switches in identity in PcG mutants.  相似文献   

6.
7.
The stable maintenance of expression patterns of homeotic genes depends on the function of a number of negative trans-regulators, termed the Polycomb (Pc) group of genes. We have examined the pattern of expression of the Drosophila segment polarity gene, engrailed (en), in embryos mutant for several different members of the Pc group. Here we report that embryos mutant for two or more Pc group genes show strong ectopic en expression, while only weak derepression of en occurs in embryos mutant for a single Pc group gene. This derepression is independent of two known activators of en expression: en itself and wingless. Additionally, in contrast to the strong ectopic expression of homeotic genes observed in extra sex combs- (esc-) mutant embryos, the en expression pattern is nearly normal in esc- embryos. This suggests that the esc gene product functions in a pathway independent of the other genes in the group. The data indicate that the same group of genes is required for stable restriction of en expression to a striped pattern and for the restriction of expression of homeotic genes along the anterior-posterior axis, and support a global role for the Pc group genes in stable repression of activity of developmental selector genes.  相似文献   

8.
9.
The aim of this study was to develop a method to generate identical twins and triplets with predicted gender. As a first step toward that aim, single blastomeres obtained from EGFP expressing eight-cell stage embryos and either diploid or tetraploid host embryos were used to compose chimera. We could follow the fate of EGFP expressing diploid blastomere derived cells in 3.5- and 4.5-day-old chimera embryos in vitro. We found that the diploid blastomere-derived cells had significantly higher chance to contribute to the inner cell mass if tetraploid host embryos were applied. After that, we developed a quick and reliable multiplex PCR strategy for sex diagnosis from single blastomeres by simultaneous amplification of the homologous ZFX and ZFY genes. By composed chimeras using single blastomeres, derived from sexed eight-cell stage embryos and a tetraploid host embryo, we could get preplanned sex newborns, wholly derived from these blastomeres. Among these mice, identical twins and a triplet were identified by microsatellite analysis. Unlike clones produced by nuclear transfer, these mice are identical at both the nuclear as well as mitochondrial DNA level. Therefore, the tetraploid embryo complementation method to produce monozygotic twins and triplets could be a valuable tool both in biomedical and agricultural applications.  相似文献   

10.
The problem of the functioning specificity of sex chromosomes during the early stages of embryogenesis in man and the associated problem of the sex ratio in spontaneous and induced abortions, as well as in newborns, remains open. We have conducted a cytogenetic examination of 342 spontaneous abortions divided into three clinical groups on the basis of the severity of the developmental disturbances of the embryo: spontaneous abortions sensu stricto with a developed embryo without any significant intrauterine delay of development (n = 100), nondeveloping pregnancies (n = 176), and anembryonic fetuses (n = 66). The frequency of chromosomal mutations in these groups was 22.0, 48.3, and 48.5%, respectively. Statistical analysis has demonstrated significant differences between the studied groups in the frequencies of the normal and abnormal karyotypes: the major contributions to these differences were associated with autosomal trisomy, triploidy, and 46,XY karyotype. The presence of 46,XY may reflect specific genetic mechanisms of prenatal mortality of embryos with normal karyotype, associated with sex and/or with the imprinting of X-chromosomes. The sex ratio in spontaneous abortions with normal karyotype was as follows: 0.77 for spontaneous abortions with well-developed embryos without any significant intrauterine delay of development; 0.60 for non-developing pregnancies; and 0.31 for anembryonic fetuses. An analysis of DNA from the embryos and their parents has demonstrated a low probability of contamination of cell cultures with mother cells as a possible source of prevalence of embryos with 46,XX karyotype among spontaneous abortions. Nondeveloping pregnancies and anembryonic fetuses showed statistically significant differences in the sex ratio (1.11) from the control group consisting of medical abortions. Differences in the sex ratio were due to an increasingly lower proportion of embryos with karyotype 46,XY (relative to the expected one) among the fetuses with an increased severity of developmental disturbances. The statistical "chances ratio" index also provided evidence that embryos with 46,XY karyotype had a higher propensity to produce a well-formed fetus as compared with the female embryos. We propose that the expression of genes of the maternal X-chromosome in XY embryos supports a more stable development during early embryogenesis as compared with XX embryos. In the latter case, normal development is coupled with the operation of an additional mechanism for compensation of the dose of X-linked genes. Operation of this mechanism increases the probability of disturbances in female embryos. A higher viability of XY embryos during the early stages of ontogenesis in man appears to explain their underrepresentation in samples of spontaneously aborted embryos and appears to be the major factor responsible for the deviation of the sex ratio from the theoretically expected value.  相似文献   

11.
12.
The problem of the functioning specificity of sex chromosomes during the early stages of embryogenesis in man and the associated problem of the sex ratio in spontaneous and induced abortions, as well as in newborns, remains open. We have conducted a cytogenetic examination of 342 spontaneous abortions divided into three clinical groups on the basis of the severity of the developmental disturbances of the embryo: spontaneous abortionssensu stricto with a developed embryo without any significant intrauterine delay of development (n=100), nondeveloping pregnancies (n=176), and anembryonic fetuses (n=66). The frequency of chromosomal mutations in these groups was 22.0, 48.3, and 48.5%, respectively. Statistical analysis has demonstrated significant differences between the studied groups in the frequencies of the normal and abnormal karyotypes: the major contributions to these differences were associated with autosomal trisomy, triploidy, and the 46.XY karyotype. The presence of 46.XY may reflect the specific genetic mechanisms of the prenatal mortality of embryos with the normal karyotype, associated with sex and/or with the imprinting of X-chromosomes. The sex ratio in spontaneous abortions with the normal karyotype was as follows: 0.77 for spontaneous abortions with well-developed embryos without any significant intrauterine delay of development; 0.60 for nondeveloping pregnancies; and 0.31 for anembryonic fetuses. An analysis of DNA from the embryos and their parents has demonstrated a low probability of contamination of cell cultures with mother cells as a possible source of the prevalence of embryos with the 46.XX karyotype among spontaneous abortions. Nondeveloping pregnancies and anembryonic fetuses showed statistically significant differences in the sex ratio from the control group consisting of medical abortions (1,11). Differences in the sex ratio were due to an increasingly lower proportion of embryos with karyotype 46.XY (relative to the expected one) among the fetuses with an increased severity of developmental disturbances. The statistical “chances ratio” index also provided evidence that embryos with the 46.XY karyotype had a higher propensity to produce a well-formed fetus as compared with the female embryos. We propose that the expression of genes of the maternal X-chromosome in XY embryos supports a more stable development during early embryogenesis as compared with XX embryos. In the latter case, normal development is coupled with the operation of an additional mechanism for compensation of the dose of X-linked genes. Operation of this mechanism increases the probability of disturbances in female embryos. A higher viability of XY embryos during the early stages of ontogenesis in man appears to explain their underrepresentation in samples of spontaneously aborted embryos and appears to be the major factor responsible for the deviation of the sex ratio from the theoretically expected value.  相似文献   

13.
Mammalian male preimplantation embryos develop more quickly than females . Using enhanced green fluorescent protein (EGFP)-tagged X chromosomes to identify the sex of the embryos, we compared gene expression patterns between male and female mouse blastocysts by DNA microarray. We detected nearly 600 genes with statistically significant sex-linked expression; most differed by 2-fold or less. Of 11 genes showing greater than 2.5-fold differences, four were expressed exclusively or nearly exclusively sex dependently. Two genes (Dby and Eif2s3y) were mapped to the Y chromosome and were expressed in male blastocysts. The remaining two (Rhox5/Pem and Xist) were mapped to the X chromosome and were predominantly expressed in female blastocysts. Moreover, Rhox5/Pem was expressed predominantly from the paternally inherited X chromosome, indicating sex differences in early epigenetic gene regulation.  相似文献   

14.
The Polycomb group (PcG) genes encode repressors of many developmental regulatory genes including homeotic genes and are known to act by modifying chromatin structure through complex formation. We describe how Ultrabithorax (Ubx) expression is affected by the PcG mutants in the visceral mesoderm. Mutant embryos of the genes extra sex combs (esc), Polycomb (Pc), additional sex combs (Asx) and pleiohomeotic (pho) were examined. In each mutation, Ubx was ectopically expressed outside of their normal domains along the anterior-posterior axis in the visceral mesoderm, which is consistent with the effect of PcG proteins repressing the homeotic genes in other tissues. All of these four PcG mutations exhibit complete or partial lack of midgut constriction. However, two thirds of esc mutant embryos did not show Ubx expression in parasegment 7 (PS7). Even in the embryos showing ectopic Ubx expression, the level of Ubx expression in the PcG mutations was weaker than that in normal embryos. We suggest that in PcG mutations the ectopic Ubx expression is caused by lack of PcG repressor proteins, while the weaker or lack of Ubx expression is due to the repression of Ubx by Abd-B protein which is ectopically expressed in PcG mutations as well.  相似文献   

15.
Differences between male and female mammals are initiated by embryonic differentiation of the gonad into either a testis or an ovary. However, this may not be the sole determinant. There are reports that embryonic sex differentiation might precede and be independent of gonadal differentiation, but there is little molecular biological evidence for this. To test for sex differences in early-stage embryos, we separated male and female blastocysts using newly developed non-invasive sexing methods for transgenic mice expressing green fluorescent protein and compared the gene-expression patterns. From this screening, we found that the Fthl17 (ferritin, heavy polypeptide-like 17) family of genes was predominantly expressed in female blastocysts. This comprises seven genes that cluster on the X chromosome. Expression analysis based on DNA polymorphisms revealed that these genes are imprinted and expressed from the paternal X chromosome as early as the two-cell stage. Thus, by the time zygotic genome activation starts there are already differences in gene expression between male and female mouse embryos. This discovery will be important for the study of early sex differentiation, as clearly these differences arise before gonadal differentiation.  相似文献   

16.
Like other members of the Polycomb group, the extra sex combs gene (esc) is required for the correct repression of loci in the major homeotic gene complexes. We show here that embryos lacking both maternal and zygotic esc+ function display transient, general derepression of both the Ultrabithorax (Ubx) and Antennapedia (Antp) genes during germ band shortening, but Sex combs reduced (Scr) expression is almost normal in the epidermis and lacking in the central nervous system (CNS). In addition, embryos that are maternally esc- but receive two paternal copies of esc+ often are characterized by ectopic expression of the three homeotic genes, especially Ubx and Antp in the CNS. Imaginal discs from these paternally rescued embryos may show discrete patches of expression of Ubx and Scr in inappropriate locations. Thus, lack of esc+ function during a brief period in early embryogenesis results in a heritable change in determined state, even in a genetically wild type animal. Within these ectopic patches, homeotic gene expression may be regulated by the disc positional fields and by cross-regulatory interactions between homeotic genes.  相似文献   

17.
Polycomb group genes were identified as a conserved group of genes whose products are required in multimeric complexes to maintain spatially restricted expression of Hox cluster genes. Unlike in Drosophila, in mammals Polycomb group (PcG) genes are represented as highly related gene pairs, indicative of duplication during metazoan evolution. Mel18 and Bmi1 are mammalian homologs of Drosophila Posterior sex combs. Mice deficient for Mel18 or Bmi1 exhibit similar posterior transformations of the axial skeleton and display severe immune deficiency, suggesting that their gene products act on overlapping pathways/target genes. However unique phenotypes upon loss of either Mel18 or Bmi1 are also observed. We show using embryos doubly deficient for Mel18 and Bmi1 that Mel18 and Bmi1 act in synergy and in a dose-dependent and cell type-specific manner to repress Hox cluster genes and mediate cell survival of embryos during development. In addition, we demonstrate that Mel18 and Bmi1, although essential for maintenance of the appropriate expression domains of Hox cluster genes, are not required for the initial establishment of Hox gene expression. Furthermore, we show an unexpected requirement for Mel18 and Bmi1 gene products to maintain stable expression of Hox cluster genes in regions caudal to the prospective anterior expression boundaries during subsequent development.  相似文献   

18.
The Polycomb Group (PcG) of epigenetic regulators maintains the repressed state of Hox genes during development of Drosophila, thereby maintaining the correct patterning of the anteroposterior axis. PcG-mediated inheritance of gene expression patterns must be stable to mitosis to ensure faithful transmission of repressed Hox states during cell division. Previously, two PcG mutants, polyhomeotic and Enhancer of zeste, were shown to exhibit mitotic segregation defects in embryos, and condensation defects in imaginal discs, respectively. We show that polyhomeotic(proximal) but not polyhomeotic(distal) is necessary for mitosis. To test if other PcG genes have roles in mitosis, we examined embryos derived from heterozygous PcG mutant females for mitotic defects. Severe defects in sister chromatid segregation and nuclear fallout, but not condensation are exhibited by Polycomb, Posterior sex combs and Additional sex combs. By contrast, mutations in Enhancer of zeste (which encodes the histone methyltransferase subunit of the Polycomb Repressive Complex 2) exhibit condensation but not segregation defects. We propose that these mitotic defects in PcG mutants delay cell cycle progression. We discuss possible mitotic roles for PcG proteins, and suggest that delays in cell cycle progression might lead to failure of maintenance.  相似文献   

19.
Sex-determining mechanisms are highly variable between phyla. Only one example has been found in which structurally and functionally related genes control sex determination in different phyla: the sexual regulators mab-3 of Caenorhabditis elegans and doublesex of Drosophila both encode proteins containing the DM domain, a novel DNA-binding motif. These two genes control similar aspects of sexual development, and the male isoform of DSX can substitute for MAB-3 in vivo, suggesting that the two proteins are functionally related. DM domain proteins may also play a role in sexual development of vertebrates. A human gene encoding a DM domain protein, DMRT1, is expressed only in the testis in adults and maps to distal 9p24.3, a short interval that is required for testis development. Earlier in development we find that murine Dmrt1 mRNA is expressed exclusively in the genital ridge of early XX and XY embryos. Thus Dmrt1 and Sry are the only regulatory genes known to be expressed exclusively in the mammalian genital ridge prior to sexual differentiation. Expression becomes XY-specific and restricted to the seminiferous tubules of the testis as gonadogenesis proceeds, and both Sertoli cells and germ cells express Dmrt1. Dmrt1 may also play a role in avian sexual development. In birds the heterogametic sex is female (ZW), and the homogametic sex is male (ZZ). Dmrt1 is Z-linked in the chicken. We find that chicken Dmrt1 is expressed in the genital ridge and Wolffian duct prior to sexual differentiation and is expressed at higher levels in ZZ than in ZW embryos. Based on sequence, map position, and expression patterns, we suggest that Dmrt1 is likely to play a role in vertebrate sexual development and therefore that DM domain genes may play a role in sexual development in a wide range of phyla.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号