首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cockroach escape response begins with a turn away from a wind puff such as that generated by an approaching predator. The presence and direction of that wind is detected by hairs on the animal's cerci, and this information is conducted to the thoracic ganglia via two populations of giant interneurons. In the thoracic ganglia, the giant interneurons excite a number of interneurons, at least some of which in turn excite motor neurons that control leg movement. In this paper we examine response properties of various thoracic neurons to wind stimuli originating from different directions. Three sets of thoracic neurons were distinguished on the basis of latency. Type A interneurons had short latencies to wind stimuli (1.3-2.25 ms). Type B interneurons had longer latencies (4-6 ms), and motor neurons had the longest latencies (5.6-17.0 ms). Individual type A interneurons either responded equally to wind from all directions or were biased in their response. Directionality was related to the presence of ventral branches near one or both sides of the midline of the ganglion. Cells with ventral median (VM) branches on either side tended to be omnidirectional or front-rear biased, whereas cells with VM branches on only one side were biased to that side. Although several type B interneurons had strong wind responses and were directionally sensitive, they did not have VM branches. We hypothesize that the presence of VM branches in type A interneurons permits connection with ventral giant interneurons, and this connection accounts for their short latency and directional properties. This hypothesis will be tested in the companion paper.  相似文献   

2.
The data described here complete the principal components of the cockroach wind-mediated escape circuit form cercal afferents to leg motor neurons. It was previously known that the cercal afferents excite ventral giant interneurons which then conduct information on wind stimuli to thoracic ganglia. The ventral giant interneurons connect to a large population of interneurons in the thoracic ganglia which, in turn, are capable of exciting motor neurons that control leg movements. Thoracic interneurons that receive constant short latency inputs from ventral giant interneurons have been referred to as type A thoracic interneurons (TIAs). In this paper, we demonstrate that the motor response of TIAs occurs in adjacent ganglia as well as in the ganglion of origin for the TIA. We then describe the pathway from TIAs to motor neurons in both ganglia. Our observations reveal complex interactions between thoracic interneurons and leg motor neurons. Two parallel pathways exist. TIAs excite leg motor neurons directly and via local interneurons. Latency and amplitude of post-synaptic potentials (PSPs) in motor neurons and local interneurons either in the ganglion of origin or in adjacent ganglia are all similar. However, the sign of the responses recorded in local interneurons (LI) and motor neurons varies according to the TIA subpopulation based on the location of their cell bodies. One group, the dorsal posterior group, (DPGs) has dorsal cell bodies, whereas the other group, the ventral median cells, (VMC) has ventral cell bodies. All DPG interneurons either excited postsynaptic cells or failed to show any connection at all. In contrast, all VMC interneurons either inhibited postsynaptic cells or failed to show any connection. It appears that the TIAs utilize directional wind information from the ventral giant interneurons to make a decision on the optimal direction of escape. The output connections, which project not only to cells within the ganglion of origin but also to adjacent ganglia and perhaps beyond, could allow this decision to be made throughout the thoracic ganglia as a single unit. However, nothing in these connections indicates a mechanism for making appropriate coordinated leg movements. Because each pair of legs plays a unique role in the turn, this coordination should be controlled by circuits didicated to each leg. We suggest that this is accomplished by local interneurons between TIAs and leg motor neurons.  相似文献   

3.
A detailed morphological study was performed to localize the probable sites of connections between two identified populations of interneurons (ventral giant interneurons and type-A thoracic interneurons) in the cockroach. Type-A thoracic interneurons (TIAS) appear to play an important role in orienting the cockroach during wind-mediated escape. However, their large number, approximately 100 neurons, precludes analyzing each cell's role electrophysiologically. The TIAS are characterized by a prominent branch located on one or both sides of the ventral median (VM) region of the thoracic ganglion in which their soma resides. The presence of this ventral median branch can be used to predict connectivity with left or right ventral giant interneurons (vGIs) (Ritzmann and Pollack, 1988) and is correlated with the TIA's directional response to wind (Westin, Ritzmann, and Goddard, 1988), suggesting that this is the locus of synaptic connection. Two approaches were employed to address this hypothesis. Morphological overlap of differentially labelled cells (ethidium bromide, Lucifer Yellow) was examined at the light microscopic level to locate areas of possible synaptic contact. Experiments were also performed in which one-half of the vGI input to the TIAs was surgically removed early in postembryonic development. Although no changes in the overall branching pattern were observed, the VM branches on the operated side were significantly shorter than were those on the unoperated side. Thoracic interneurons that do not receive inputs from vGIs were unaffected by this surgery. The data reported here thereby confirm previous observations by localizing the vGI inputs specifically to the VM branch, and provide a morphological cue for predicting connectivity and function.  相似文献   

4.
The data described here complete the principal components of the cockroach wind-mediated escape circuit from cercal afferents to leg motor neurons. It was previously known that the cercal afferents excite ventral giant interneurons which then conduct information on wind stimuli to thoracic ganglia. The ventral giant interneurons connect to a large population of interneurons in the thoracic ganglia which, in turn, are capable of exciting motor neurons that control leg movements. Thoracic interneurons that receive constant short latency inputs from ventral giant interneurons have been referred to as type A thoracic interneurons (TIAs). In this paper, we demonstrate that the motor response of TIAs occurs in adjacent ganglia as well as in the ganglion of origin for the TIA. We then describe the pathway from TIAs to motor neurons in both ganglia. Our observations reveal complex interactions between thoracic interneurons and leg motor neurons. Two parallel pathways exist. TIAs excite leg motor neurons directly and via local interneurons. Latency and amplitude of post-synaptic potentials (PSPs) in motor neurons and local interneurons either in the ganglion of origin or in adjacent ganglia are all similar. However, the sign of the responses recorded in local interneurons (LI) and motor neurons varies according to the TIA subpopulation based on the location of their cell bodies. One group, the dorsal posterior group, (DPGs) has dorsal cell bodies, whereas the other group, the ventral median cells, (VMC) has ventral cell bodies. All DPG interneurons either excited postsynaptic cells or failed to show any connection at all. In contrast, all VMC interneurons either inhibited postsynaptic cells or failed to show any connection. It appears that the TIAs utilize directional wind information from the ventral giant interneurons to make a decision on the optimal direction of escape. The output connections, which project not only to cells within the ganglion of origin but also to adjacent ganglia and perhaps beyond, could allow this decision to be made throughout the thoracic ganglia as a single unit. However, nothing in these connections indicates a mechanism for making appropriate coordinated leg movements. Because each pair of legs plays a unique role in the turn, this coordination should be controlled by circuits dedicated to each leg. We suggest that this is accomplished by local interneurons between TIAs and leg motor neurons.  相似文献   

5.
Dorsal unpaired median (DUM) cells in orthopteran insects are known to contain the neuromodulatory substance octopamine, and DUM cells with peripheral axons augment synaptic activity at neuromuscular junctions. One of the most studied systems in the cockroach is the giant interneuron (GI) system which controls the initial movements of a wind-mediated escape response. Our data demonstrate that DUM cells that are restricted to the central nervous system (DUM interneurons) receive inputs from ventral giant interneurons (vGIs) but not from dorsal giant interneurons (dGIs). In contrast, DUM cells that have peripheral axons consistently fail to be excited by any giant interneurons. The DUM interneurons are excited by vGIs on both sides of the CNS and, when the vGIs are excited in pairs, summation occurs. Wind fields that have been generated for two of the DUM interneurons are omnidirectional. These data, taken along with the known association of DUM cells with the neuromodulatory substance octopamine, suggest that the DUM interneurons may act to modulate central synapses.  相似文献   

6.
In the cockroach, a population of thoracic interneurons (TIs) receives direct inputs from a population of ventral giant interneurons (vGIs). Synaptic potentials in type-A TIs (TIAs) follow vGI action potentials with constant, short latencies at frequencies up to 200 Hz. These connections are important in the integration of directional wind information involved in determining an oriented escape response. The physiological and biochemical properties of these connections that underlie this decision-making process were examined. Injection of hyperpolarizing or depolarizing current into the postsynaptic TIAs resulted in alterations in the amplitude of the post-synaptic potential (PSP) appropriate for a chemical connection. In addition, bathing cells in zero-calcium, high-magnesium saline resulted in a gradual decrement of the PSP, and ultimately blocked synaptic transmission, reversibly. Single-cell choline acetyltransferase (ChAT) assays of vGI somata were performed. These assays indicated that the vGIs can synthesize acetylcholine. Furthermore, the pharmacological specificity of transmission at the vGI to TIA connections was similar to that previously reported for nicotinic, cholinergic synapses in insects, suggesting that the transmitter released by vGIs at these synapses is acetylcholine.  相似文献   

7.
Paired intracellular recordings were made to identify thoracic interneurons that receive stable short latency excitation from giant interneurons (GIs). Eight metathoracic interneurons were identified in which EPSPs were correlated with GI activity which was evoked either by wind or intracellular electrical stimulation or occurred spontaneously. In all cases EPSPs in the thoracic interneurons followed GI action potentials faithfully at short latencies. EPSPs associated with GI action potentials consistently represented the upper range of amplitudes of a large sample of EPSPs recorded in the thoracic interneurons. Seven of the interneurons were correlated with activity in ventral GIs but were not correlated with activity in dorsal GIs. Four of these interneurons were part of a discrete population of interneurons whose somata are located in the dorsal posterior region of the ganglion. The eighth interneuron (designated the T cell) was positively correlated with activity in dorsal GIs. The four dorsal posterior group interneurons and the T cell were depolarized intracellularly to establish their potential for generating motor activity. In all cases evoked activity was stronger in leg motor neurons (primarily Ds and the common inhibitor) located on the side contralateral to the interneuron's soma. The results indicate that significant polysynaptic pathways exist by which GI activity can evoke motor activity. The implications of this conclusion to investigations on the cockroach escape system are discussed.  相似文献   

8.
In the cockroach, a population of thoracic interneurons (TIs) receives direct inputs from a population of ventral giant interneuons (vGIs). Synaptic potentials in type-A TIs (TIAs) follow vGI action potentials with constant, short latencies at frequencies up to 200 Hz. These connections are important in the integration of directional wind information involved in determining an oriented escape response. The physiological and biochemical properties of these connections that underlie this decision-making process were examined. Injection of hyperpolarizing or depolarizing current into the postsynaptic TIAs resulted in alterations in the amplitude of the postsynaptic potential (PSP) appropriate for a chemical connection. In addition, bathing cells in zero-calcium, high magnesium saline resulted in a gradual decrement of the PSP, and ultimately blocked synaptic transmission, reversibly. Single-cell choline acetyltransferase (ChAT) assays of vGI somata were performed. These assays indicated that the vGIs can synthesize acetylcholine. Further more, the pharmacological specificity of transmission at the vGI to TIA connections was similar to that previously reported for nicotinic, cholinergic synapses in insects, suggesting that the transmitter released by vGIs at these sypapses is acetylcholine. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
In the escape system of the cockroach, Periplaneta americana, a population of uniquely identifiable thoracic interneurons (type A or TIAs) receive information about wind via chemical synapses from a population of ventral giant interneurons (vGIs). The TIAs are involved in the integration of sensory information necessary for orienting the animal during escape. It is likely that there are times in an animal's life when it is advantageous to modify the effectiveness of synaptic transmission between the vGIs and the TIAs. Given the central position of the TIAs in the escape system, this would greatly alter associated motor outputs. We tested the ability of octopamine, serotonin, and dopamine to modulate synaptic transmission between vGIs and TIAs. Both octopamine and dopamine significantly increased the amplitude of vGI-evoked excitatory postsynaptic potentials (EPSPs) in TIAs at 10(-4)-10(-2) M, and 10(-3) M, respectively. On the other hand, serotonin significantly decreased the vGI-evoked EPSPs in TIAs at 10(-4)-10(-3) M. These results indicate that octopamine, serotonin, and dopamine are capable of modulating the efficacy of transmission of important neural connections within this circuit.  相似文献   

10.
In the escape system of the cockroach, Periplaneta americana, a population of uniquely identifiable throacic interneurons (type A or TIAs) receive information about wind via chemical synapses from a population of ventral giant interneurons (vGIs). The TIAs are involved in the integration of sensory information necessary for orienting the animal during escape. It is likely that there are times in an animal's life when it is advantageous to modify the effectiveness of synaptic transmission between the vGIs and the TIAs. Given the central position of the TIAs inthe escape system, this would greatly alter associated motor outputs. We tested the ability of octopamine, serotonin, and dopamine to modulate synaptic transmission between vGIs and TIAs. Both octopamine and dopamine significantly increased the amplitude of vGI-evoked excitatory postsynaptic potentials (EPSPs) in TIAs at 10?4?10?2 M, and 10?3 M, respectively. On the other hand, serotonin significantly decreased the vGI-evoked EPSPs in TIAs at 10?4?10?3 M. These results indicate that octopamine, serotonin, and dopamine are capable of modulating the efficacy of transmission of important neural connections within this circuit. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
1. In a tethered cockroach (Periplaneta americana) whose wings have been cut back to stumps, it is possible to elicit brief sequences of flight-like activity by puffing wind on the animal's body. 2. During such brief sequences, rhythmic bursts of action potentials coming from the thorax at the wingbeat frequency, descend the abdominal nerve cord to the last abdominal ganglion (A6). This descending rhythm is often accompanied by an ascending rhythm (Fig. 2). 3. Intracellular recording during flight-like activity from identified ascending giant interneurons, and from some unidentified descending axons in the abdominal nerve cord, shows that: (a) ventral giant interneurons (vGIs) remain silent (Fig. 3); (b) dorsal giant interneurons (dGIs) are activated at the onset of the flight-like activity and remain active sporadically throughout the flight sequence (Fig.4); (c) some descending axons in the abdominal nerve cord show rhythmic activity phase-locked to the flight rhythm (Fig. 5). 4. Also during such brief sequences, the cercal nerves, running from the cerci (paired, posterior, wind sensitive appendages) to the last abdominal ganglion, show rhythmic activity at the wingbeat frequency (Fig. 6). This includes activity of some motor axons controlling vibratory cercal movements and of some sensory axons. 5. More prolonged flight sequences were elicited in cockroaches whose wings were not cut and which flew in front of a wind tunnel (Fig. 1B). 6. In these more prolonged flight sequences, the number of ascending spikes per burst was greater than that seen in the wingless preparation (Fig. 8; compare to Fig. 2). Recordings from both ventral and dorsal GIs show that: in spite of the ongoing wind from both the tunnel and the beating wings, which is far above threshold for the vGIs in a resting cockroach, the vGIs are entirely silent during flight. Moreover, the vGIs response to strong wind puffs that normally evoke maximal GI responses is reduced by a mean of 86% during flight (Fig. 9). The dGIs are active in a strong rhythm (Figs. 11 and 12). 7. Three sources appear to contribute to the ascending dGI rhythm (1) the axons carrying the rhythmic descending bursts; (2) the rhythmic sensory activity resulting from the cercal vibration; and (3) the sensory activity resulting from rhythmic wind gusts produced by the wingbeat and detected by the cerci. The contribution of each source has been tested alone while removing the other two (Figs. 13 and 14). Such experiments suggest that all 3 feedback loops are involved in rhythmically exciting the dGIs (Fig. 15).  相似文献   

12.
13.
In this paper, I have examined the behavioral functions of feedback loops between the cockroach (Periplaneta americana) giant interneurons (GIs) and the flight thoracic rhythm generator.
1.  During sequences of flight-like activity, I have recorded from identified giant interneurons from the dorsal (dGIs) or the ventral (vGIs) group and stimulated them either with current pulses or with wind stimuli delivered to the cerci.
2.  Removal of the dGIs' activity which normally occurs during natural flight reduced both the wingbeat frequency and flight duration, and increased the variability of the wingbeat frequency (Fig. 6). Intracellular rhythmic stimulation of a single dGI during flight increased the wingbeat frequency and the duration of flight (Figs. 7, 8). The wind sensitivity of the dGIs was unchanged during flight compared with at rest (Fig. 2). A single short burst of spikes in a dGI had complex effects on the flight muscle recording but apparently did not reset the flight rhythm (Fig. 9). These results suggest that the rhythmic activation of the dGIs during natural light participates in the control of the wingbeat frequency and the flight duration (Fig. 12).
3.  In contrast to the dGIs, the vGIs became significantly less sensitive to wind during flight (Fig. 3). Stimulation of one of the vGIs (GI1) with 10 spikes at roughly 180/s during flight evokes immediate cessation of flight (Figs. 10, 11). Given that the vGI activity can stop flight, the inhibition imposed on the ventral group during flight appears to be designed to prevent this group from interfering with the flight program (Fig. 12).
  相似文献   

14.
15.
The ventral giant interneurons (GIs) in the cockroach have two distinct dendritic fields: a small one ipsilateral to the soma, and a larger, contralateral field from which the axon arises. The major input to these GIs is from the cercus on the axon side; when this cercus is ablated in the last instar before the adult stage, input from the other cercus becomes more effective within 30 days (Vardi and Camhi, 1982b). I wished to determine if the input from the intact, soma-ipsilateral cercus contacted the GIs purely ipsilaterally and if EPSPs at this site were larger in deafferented animals. Consistent with earlier anatomical findings, intracellular recordings from the GI somata showed that the majority of cercal inputs synapse on their own side of the ganglion in normal animals. This was evidenced by differences in the size and shape of the synaptic potentials evoked from the two cerci and by the presence of large EPSPs after a ganglion had been split along the midline. Unitary EPSPs produced by stimulation of single, identified cercal afferents, ipsilateral to the soma, were compared between normal and deafferented animals. Column "h" afferents were chosen because they make a large contribution to the receptive fields of GIs 1 and 2 after ablation of the contralateral cercus. In addition, the arbors of these afferents, when stained with cobalt, did not cross the ganglionic midline in normal animals. Unitary EPSPs recorded in GI 2 were significantly larger in the deafferented animals. There was, however, no significant change in the size of EPSPs in GI 1. Nevertheless, the results from GI 2 suggest that partial deafferentation in the central nervous system can increase the efficacy of synapses distant from the locus of denervation.  相似文献   

16.
Stimulation of the cercal nerve of the female American cockroach evokes a short-latency action potential in one giant axon in the ipsilateral connective of the ventral nerve cord. Neither procion yellow nor cobalt passes from the nerve cord into the cercal nerve, and the short-latency response disappears several weeks after removal of the cercus. Therefore, the short-latency spike is not due to a branch of the giant interneuron extending into the cercal nerve, but is presumably due to electrotonic coupling of cercal afferents to the giant. Responses of the presumed electrotonic junction to drugs, varied ionic concentrations and tonicity, and to cold are described. These responses and the impermeability of the junction to procion yellow suggest that the coupling is not by means of a gap junction. There is evidence for electrotonic coupling to another giant axon in the female, but this junction does not ordinarily transmit a spike. Electrotonic coupling is rare in males. In some females action potentials in giant interneurons excite cercal afferents electrically, and the afferents then re-excite the giants chemically. Electrotonic coupling may reduce fatigue and habituation of chemical synapses by depolarizing presynaptic terminals whenever the giants are active.  相似文献   

17.
The escape system of the American cockroach is both fast and directional. In response to wind stimulation both of these characteristics are largely due to the properties of the ventral giant interneurons (vGIs), which conduct sensory information from the cerci on the rear of the animal to type A thoracic interneurons (TIAs) in the thoracic ganglia. The cockroach also escapes from tactile stimuli, and although vGIs are not involved in tactile-mediated escapes, the same thoracic interneurons process tactile sensory information. The response of TIAs to tactile information is typically biphasic. A rapid initial depolarization is followed by a longer latency depolarization that encodes most if not all of the directional information in the tactile stimulus. We report here that the biphasic response of TIAs to tactile stimulation is caused by two separate conducting pathways from the point of stimulation to the thoracic ganglia. Phase 1 is generated by mechanical conduction along the animal's body cuticle or other physical structures. It cannot be eliminated by complete lesion of the nerve cord, and it is not evoked in response to electrical stimulation of abdominal nerves that contain the axons of sensory receptors in abdominal segments. However, it can be eliminated by lesioning the abdominal nerve cord and nerve 7 of the metathoracic ganglion together, suggesting that the relevant sensory structures send axons in nerve 7 and abdominal nerves of anterior abdominal ganglia. Phase 2 of the TIAs tactile response is generated by a typical neural pathway that includes mechanoreceptors in each abdominal segment, which project to interneurons with axons in either abdominal connective. Those interneurons with inputs from receptors that are ipsilateral to their axon have a greater influence on TIAs than those that receive inputs from the contralateral side. The phase 1 response has an important role in reducing initiation time for the escape response. Animals in which the phase 2 pathway has been eliminated by lesion of the abdominal nerve cord are still capable of generating a partial startle response with a typically short latency even when stimulated posterior to the lesion. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Receåfindings indicate that cockroaches escape in response to tactile stimulation as well as they do in response to the classic wind puff stimulus. The thoracic interneurons that receive inputs from ventral giant interneurons also respond to tactile stimulation and therefore, represent a potential site of convergence between wind and tactile stimulation as well as other sensory modalities. In this article, we characterize the tactile response of these interneurons, which are referred to as type-A thoracic interneurons (TIAs). In response to tactile stimulation of the body cuticle, TIAs typically respond with a short latency biphasic depolarization which often passes threshold for action potentials. The biphasic response is not typical of responses to wind stimulation nor of tactile stimulation of the antennae. It is also not seen in tactile responses of thoracic interneurons that are not part of the TIA group. The responses of individual TIAs to stimulation of various body locations were mapped. The left-right directional properties of TIAs are consistent with their responses to wind puffs from various different directions. Cells that respond equally well to wind from the left and right side also respond equally well to tactile stimuli on the left and right side of the animal's body. In contrast, cells that are biased to wind on one side are also biased to tactile stimulation on the same side. In general, tactile responses directed at body cuticle are phasic rather than tonic, occurring both when the tactile stimulator is depressed and released. The response reflects stimulus strength and follows repeated stimulation quite well. However, the first phase of the biphasic response is more robust during high-frequency stimulation than the second phase. TIAs also respond to antennal stimulation. However, here the response characteristics are complicated by the fact that movement of either antenna evokes descending activity in both left and right thoracic connectives. The data suggest that the TIAs make up a multimodal site of sensory convergence that is capable of generating an oriental escape turn in response to any one of several sensory cues. 1994 John Wiley & Sons, Inc.  相似文献   

19.
Summary Direct evidence for monosynaptic connections between filiform hair sensory axons and giant interneurons (GIs) in the first instar cockroach, Periplaneta americana, was obtained using intracellular recording and HRP injection followed by electron microscopy. GIs 1–6 all receive monosynaptic input from at least one filiform afferent axon. GI1, GI2 and GI5 receive input only from the medial (M) axon, while GI3, GI4 and GI6 receive input from both M and lateral (L) axons. The dendrites of GI3 and GI6 which are contralateral to the cell bodies receive input from both axons whereas the smaller ipsilateral dendritic fields have synapses only from the L axon. GI5 has M axon input only onto its contralateral dendrites. In 50% of preparations GI7 receives weak input from the ipsilateral L axon. There is no obvious relationship between the morphology of the giant interneurons and the pattern of input they receive from the filiform afferents.Abbreviations GI giant interneuron - HRP horseradish peroxidase - L lateral axon - M medial axon  相似文献   

20.
Three groups of giant fibers are found in the cockroach ventral nerve cord. A latero-dorsal group (dorsal GIs), a latero-ventral group (ventral GIs) and a medio-ventral group. The morphology of all three groups of fibers within the thoracic ganglia is described. The morphology of the dorsal and ventral GI pathways in the abdominal and suboesophageal ganglia is also described. The projection patterns of the neurons in each ganglion are remarkably similar which suggests a common function. When motorneurons 5rl (depressor) and 6Br4 (levator) are stained simultaneously with the dorsal and ventral GI groups, some branches from both motor and giant neurons converge. The branching of the remaining medio-ventral group of fibers and their proximity to areas receiving motorneuronal input suggests that these are the small diameter axons described by Dagan and Parnas (1970).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号