首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Temperature-sensitive mutants defective in cell division were isolated after localised mutagenesis of the terminus region of the Escherichia coli chromosome. The defective gene in one of these mutants, dicA, was mapped at 34.9 min by linkage with manA and with three physically characterized Tn10 insertions. Temperature-sensitivity conferred by mutation dicA1 in a recA backround was suppressed by the presence of hybrid plasmids carrying the wild-type gene. In addition, the mutation was suppressed either by tranposon inactivation of a nearby gene, dicB, or by deletion of the entire dicA-dicB interval. These results define the dicA-dicB locus as a new dispensable genetic cluster involved in the control of cell division.  相似文献   

2.
K Cam  S Bjar  D Gil    J P Bouch 《Nucleic acids research》1988,16(14A):6327-6338
The dicA1 mutation, located in the replication termination region of Escherichia coli at 34.9 min, confers a temperature-sensitive, division defective phenotype to its hosts. Previous analysis had suggested that dicA codes for a repressor of a nearby division inhibition gene dicB. We show now that gene dicB is part of a complex operon. Five open reading frames (ORFs 1 to 5) preceeded by a promoter sensitive to dicA repression are found within a 1500 bp segment, and are organized into two clusters separated by a long untranslated region. Evidence for expression of these ORFs was obtained from in vitro or in vivo translation of plasmid-coded genes. IPTG-dependent cell filamentation was obtained when either the entire or the C-terminal part of the fourth ORF was placed under control of the lac promoter. In both cases, a 7 KD protein corresponding to translation from an in-frame ATG of ORF4 (dicB) was made. We propose that this C-terminal protein is the division inhibitor synthesized in dicA1 mutants.  相似文献   

3.
S Bjar  K Cam    J P Bouch 《Nucleic acids research》1986,14(17):6821-6833
A mutation in a gene dicA of Escherichia coli leads to temperature-sensitive cell division, by allowing expression of a nearby division inhibition gene dicB (1). We have now established the sequence of the DicA region and identified DicA as a 15.5 KD protein. A second gene dicC transcribed divergently from dicA and coding for an 8.5 KD protein can also complement mutation dicA1 when provided on a multicopy plasmid.  相似文献   

4.
5.
Summary The dasC mutation, an extragenic suppressor of dnaA46, was mapped by P1 transduction near the rep, trxA, rho region of the Escherichia coli chromosome. The dasC mutation could not be separated from trxA by P1 transduction indicating that dasC and trxA are allelic. Multicopy plasmids containing an intact trxA gene were able to reverse the suppressive effect of the dasC mutation on the dnaA46 mutation. Introduction of a frameshift mutation into the cloned trxA coding region abolished the ability of these recombinant plasmids to reverse the suppressive effect. These results indicate that dasC is allelic with trxA, the gene encoding thioredoxin.  相似文献   

6.
Summary The ant product of Salmonella phage P22, synthesized by its immI region, releases when acting in cis replication inhibition for phages P22 and L. When ant product acts in trans on a coinfecting immunity sensitive phage (Thomas-Bertani-experiment as test for release of replication inhibition) full replication ensues only if both superinfecting phages are homologous in the specificities of their immC and immI regions. If these regions are heterologous, differing in immC, immI or in both, the replication of the phage expected to be complemented by ant is inhibited. This inhibition is observed in both L- and Px-lysogenic bacteria and can be released in case of ant - amber phages by action of ant in cis in su +lysogenic bacteria.  相似文献   

7.
Sequencing of the 7 kb immC region from four P1-related phages identified a novel DNA recombinase that exhibits many Cre-like characteristics, including recombination in mammalian cells, but which has a distinctly different DNA specificity. DNA sequence comparison to the P1 immC region showed that all phages had related DNA terminase, C1 repressor and DNA recombinase genes. Although these genes from phages P7, ϕw39 and p15B were highly similar to those from P1, those of phage D6 showed significant divergence. Moreover, the D6 sequence showed evidence of DNA deletion and substitution in this region relative to the other phages. Characterization of the D6 site-specific DNA recombinase (Dre) showed that it was a tyrosine recombinase closely related to the P1 Cre recombinase, but that it had a distinct DNA specificity for a 32 bp DNA site (rox). Cre and Dre are heterospecific: Cre did not catalyze recombination at rox sites and Dre did not catalyze recombination at lox sites. Like Cre, Dre catalyzed both integrative and excisive recombination and required no other phage-encoded proteins for recombination. Dre-mediated recombination in mammalian cells showed that, like Cre, no host bacterial proteins are required for efficient Dre-mediated site-specific DNA recombination.  相似文献   

8.
Summary A novel mutant of Escherichia coli, named cfcA1, was isolated from a temperature-sensitive dnaB42 strain, and found to have the following characteristics. Division arrest and lethality induced by inhibition of DNA replication was reduced and delayed in the cfcA1 dnaB42 strain, as compared with the parental dnaB42 strain. Two types of inhibition of division induced by the addition of nalidixic acid or hydroxyurea were suppressed by the cfcA1 mutation. Under permissive conditions for DNA replication, the colony forming ability of cfcA1 cells was significantly reduced as compared with that of cfc + cells; conversely the division rate of cfcA1 cells was higher than that of cfc + cells. The cfcA1 mutation partially restored division arrest induced in the thermosensitive ftsZ84 mutant at the restrictive temperature and suppresed the UV sensitivity of the lon mutation. The mutation was mapped at 79.2 min on the E. coli chromosome. Taking these properties into account, it is hypothesized that the cfcA gene is involved in determining the frequency of cell division per round of DNA replication by interacting with the FtsZ protein which is essential for cell division.  相似文献   

9.
Summary This study presents plasmid systems that utilize regulatory signals of bacteriophage Lambda to accomplish regulated expression of cloned genes in an A. nidulans R2 derivative strain. An operator-promoter region and the temperature-sensitive repressor gene cI857 of bacteriophage Lambda were employed. Linked to a cyanobacterial replicon, the plasmid vectors efficiently transformed Anacystis and were stably maintained within this host. The cat structural gene, encoding chloramphenicol acetyltransferase, was used to demonstrate that expression can be regulated by temperature shift. We have identified in extracts from the vector bearing Anacystis, a protein similar in size and immunology to the Lambda repressor. The systems described should allow controlled expression of adventitious genes in the cyanobacterial host.Abbreviations APr ampicillin resistance - Cmr chloramphenicol resistance - CmActase chloramphenicol acetyltransferase - Kmr Kanamycine resistance - [ ] indicates plasmid carrier state  相似文献   

10.
Summary The proteins P10 and P12 have been shown to be gene products of a new stability system, ParD, of plasmid R1. It is now shown that an R1 miniplasmid, pAB112, carrying a trans-complementable amber mutation in the gene of the P10 protein, is lethal for the host in the absence of suppression. This lethal effect is suppressed in a supF background and also by deletions in pAB112 that affect the gene of the P12 protein. These data indicate that the P12 protein has a lethal effect on the host and that this effect is neutralized by the P10 protein. The possibility that the stabilization conferred by the ParD system could be due to a counterselection, mediated by P12, of cells that lose the plasmid at cell division, is discussed.  相似文献   

11.
Summary Phage P22 defective in gene 24 and harbouring the oc mutation k5 in OR exhibits a strongly increased c2-repressor synthesis after infection of non-lysogenic S. typhimurium. The repressor synthesis depends strictly on an intact c1 gene. The kinetics of its synthesis, as monitored by polyacrylamid gel electrophoresis, is the same as with P22 c +, namely a turn off 8–10 min after infection. — After infection of P22-lysogenic bacteria with either P22 24 k5 or P22 24 k5 cl, much lower amounts of repressor are synthesized but again with the same kinetics. These results suggest a cro-like function acting at PRE and PRM of P22. The possible reason for the c2 overproduction is discussed.  相似文献   

12.
Summary Phage P22 mutationc27 defines a site required for establishment, but not maintenance of repressor synthesis. This study confirms that P22c27 is able to synthesize repressor if active repressor is present. An interaction involving gene products ofc1 andc3 and the sitec27 retards expression of the lytic genes of P22. Mutations in genec1 eliminate the retardation of lytic gene expression, butc27 does not alleviate the retardation. These results are used to construct a model that postulates that binding ofc1 andc3 products to DNA at or nearc27 is sufficient to cause retardation of lytic gene expression. The functioning ofc27 is contrasted to that of the analogouscy mutants of λ. The effect of thec27 mutation upon alleviation of “c1 repression” was studied in a partial revertant ofSalmonella typhimurium Pox-1 in whichc1 repression is exaggerated. The higher frequency of lysogenization seen in the mutant host is related to enhancedc1 repression.  相似文献   

13.
Summary Several mutations which affect critical cell functions in Escherichia coli map at 76 min on the chromosome. The genes which map in this region are the cell division genes ftsY, E, X and S, the heat shock regulatory gene rpoH/htpR/hin, the lipoprotein biogenesis gene fam and another essential gene dnaM. We determined the relative positions of most of these genes and show that the rpoH gene lies immediately downstream of the last gene (ftsX) of a cell division operon and is transcribed in the same direction. We also show that the fam-715 mutation is allelic with rpoH and so the conditional lipoprotein deficiency of the fam mutation must be due to the pleiotropic nature of the heat shock response.  相似文献   

14.
Summary In Aspergillus nidulans expression of the acetamidase structural gene, amdS, is under the control of at least four regulatory genes including the trans-acting amdA regulatory gene. A cis-acting mutation (amdI66) consisting of an 18 by duplication in the 5 region of the amdS gene results in very high levels of acetamidase activity but only in strains carrying semi-dominant mutations in the amdA gene. In selecting for increased amdS expression in an amdI66 amdA strain, an A. nidulans strain with a mutation in the 5 region of the amdS gene was isolated. The nucleotide sequence was determined of the region containing the mutation, designated amdI666. The mutant strain carries three tandem copies of the 18 by sequence that is duplicated in the amdI66 mutation. Thus, from a strain carrying a duplication of an apparent regulatory protein binding site with little effect on gene expression, a strain has been derived that carries a triplication of the site with consequent major effects on regulation. The multiple copies of regulatory sites present in many genes may have been generated by a similar mechanism.  相似文献   

15.
Liu W  Fu Y  Hu G  Si H  Zhu L  Wu C  Sun Z 《Planta》2007,226(3):785-795
A thermo-sensitive chlorophyll deficient mutant was isolated from more than 15,000 transgenic rice lines. The mutant displayed normal phenotype at 23°C or lower temperature (permissive temperature). However, when grown at 26°C or higher (nonpermissive temperature) the plant exhibited an abnormal phenotype characterized by yellow green leaves. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, which is tentatively designed as cde1(t) (chlorophyll deficient 1, temporally). PCR analysis and hygromycin resistance assay indicated the mutation was not caused by T-DNA insertion. To isolate the cde1(t) gene, a map-based cloning strategy was employed and 15 new markers (five SSR and ten InDels markers) were developed. A high-resolution physical map of the chromosomal region around the cde1(t) gene was made using F2 and F3 population consisting of 1,858 mutant individuals. Finally, the cde1(t) gene was mapped in 7.5 kb region between marker ID10 and marker ID11 on chromosome 2. Sequence analysis revealed only one candidate gene, OsGluRS, in the 7.5 kb region. Cloning and sequencing of the target region from the cde1(t) mutant showed that a missense mutation occurred in the mutant. So the OsGluRS gene (TIGR locus Os02 g02860) which encode glutamyl-tRNA synthetase was identified as the Cde1(t) gene.  相似文献   

16.
17.
Summary Expression of the P RE (establishment) pathway for repressor synthesis is regulated both by phage-specific genetic elements and by physiological conditions. Here we describe the effects of temperature, multiplicity of infection, mutations in the cro gene, and a mutation in P RM on P RE-directed repressor synthesis. As Reichardt (1975a) has shown, repressor synthesis begins 5–15 min after infection by wildtype phage, and is shut off at 20–30 min after infection, depending on the temperature. At 43°, synthesis starts sooner, shuts off earlier, and leads to lower repressor levels than are attained at lower temperatures. Experiments with the temperature sensitive mutant crots20 demonstrate that, as had been shown previously in experiments at 30° and 37° C, cro protein is responsible for the shut-off of repressor synthesis at 43°. In addition to the effects of temperature, the kinetics of repressor synthesis are strongly affected by multiplicity of infection (moi). At mois greater than 10, repressor synthesis after infection by wildtype at 30° is dramatically inhibited. Unexpectedly, the P RM mutation prm116, under certain conditions, can alleviate both cro-mediated shutoff and the inhibition of P RE-directed repressor synthesis at high moi. These effects of prm116 are observed only at low temperature (30°–32° C) and at mois of about 6–10 or greater; they also appear to be cis-specific. Possible mechanisms for the effects of the prm116 mutation are discussed. Finally, these studies demonstrate that crots20, which was isolated as a temperature-sensitive lethal mutation in the cro gene (Herskowitz, unpublished), is temperature-sensitive with respect to the ability to shutoff P RE-directed repressor synthesis; however, even at low temperature (30° C), the crots20 gene product is only partially active.  相似文献   

18.
Summary Using SDS-polyacrylamide gel electrophoresis to study the early expression of P22 genes we show that early expression of the ant-gene (imm I region) is turned off after 6–8 min, independent of the late acting mnt-repressor. A semi-clear mutant called cir5 is defective for this early ant turn-off. The mutation cir5 maps in the imm I region of P22 between genes mnt and ant. P22 cir5 mutants are defective for a repressor which acts in trans to regulate early ant synthesis. There appears to be no absolute requirement of the cir5 allele for the establishment of lysogeny. The overproduction of ant in the P22 cir5 mutant leads to a marked increase in abortive infections, killing the infected cells. The cir5-phenotype can be suppressed by an ant - mutation.  相似文献   

19.
Summary A physical map of the ban gene of P1 and sites relevant to its regulation has been deduced from cloning of the appropriate regions of P1 wild-type and of P1 ban regulatory mutants. The cloning required the presence of P1 repressor in the cell confirming the existence of a repressible ban operon (Austin et al. 1978). Evidence for additional member(s) of that operon is presented. Of particular interest for understanding the regulation of ban are the relative positions of a binding site for the P1 repressor and of the regulatory mutations bac and crr that render ban expression constitutive. The results reveal a repressible operon-like structure of about 4 kb within the P1 EcoRI-3 fragment that comprises a c1 repressor binding site/bac additional gene(s) — crr/ban in the clockwise direction of the circular map of P1.  相似文献   

20.
Proline accumulation and catabolism play significant roles in adaptation to a variety of plant stresses including osmotic stress, drought, temperature, freezing, UV irradiation, heavy metals and pathogen infection. In this study, the gene Δ1 -pyrroline-5-carboxylate dehydrogenase (P5CDH), which catalyzes the second step in the conversion of proline to glutamate, is characterized in a number of cereal species. P5CDH genes from hexaploid wheat, Triticum turgidum (durum wheat), Aegilops tauschii, Triticum monococcum, barley, maize and rice were shown to be conserved in terms of gene structure and sequence, present as a single copy per haploid, non-polyploid genome and located in evolutionarily conserved linkage groups. A wheat cDNA sequence was shown by yeast complementation to encode a functional P5CDH activity. A divergently-transcribed rab7 gene was identified immediately 5′ of P5CDH in all grasses examined, except rice. The rab7/P5CDH intergenic region in these species, which presumably encompasses 5′ regulatory elements of both genes, showed a distinct pattern of sequence evolution with sequences in juxtaposition to each ORF conserved between barley, wheat, A. tauschii and T. monococcum. More distal 5′ sequence in this intergenic region showed a higher rate of divergence, with no homology observed between these regions in the wheat and barley genomes. Maize and rice showed no similarity in regions 5′ of P5CDH when compared with wheat, barley, and each other, apart from a 22 bp region of conserved non-coding sequence (CNS) that is similar to a proline response element identified in the promoter of the Arabidopsis proline dehydrogenase gene. A palindromic motif similar to this cereal CNS was also identified 5′ of the Arabidopsis AtP5CDH gene showing conservation of this sequence in monocot and dicot lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号