首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
A novel genus of hyperthermophilic, strictly chemolithotrophic archaea, Ignicoccus, has been described recently, with (so far) three isolates in pure culture. Cells were prepared for ultrastructural investigation by cultivation in cellulose capillaries and processing by high-pressure freezing, freeze-substitution and embedding in Epon. Cells prepared in accordance with this protocol consistently showed a novel cell envelope structure previously unknown among the Archaea: a cytoplasmic membrane; a periplasmic space with a variable width of 20 to 400 nm, containing membrane-bound vesicles; and an outer sheath, approximately 10 nm wide, resembling the outer membrane of gram-negative bacteria. This sheath contained three types of particles: numerous tightly, irregularly packed single particles, about 8 nm in diameter; pores with a diameter of 24 nm, surrounded by tiny particles, arranged in a ring with a diameter of 130 nm; and clusters of up to eight particles, each particle 12 nm in diameter. Freeze-etched cells exhibited a smooth surface, without a regular pattern, with frequent fracture planes through the outer sheath, indicating the presence of an outer membrane and the absence of an S-layer. The study illustrates the novel complex architecture of the cell envelope of Ignicoccus as well as the importance of elaborate preparation procedures for ultrastructural investigations.  相似文献   

2.
Flagella of some pathogens or marine microbes are sheathed by an apparent extension of the outer cell membrane. Although flagellar sheath has been reported for almost 60 years, little is known about its function and the mechanism of its assembly. Recently, we have observed a novel type of sheath that encloses a flagellar bundle, instead of a single flagellum, in a marine magnetotactic bacterium MO-1. Here, we reported isolation and characterization of the sheath which can be described as a six-start, right-handed helical tubular structure with a diameter of about 100 nm, and a pitch of helix of about 260 nm. By proteomic, microscopic and immunolabelling analyses, we showed that the sheath of MO-1 consists of glycoprotein with an apparent molecular mass > 350 kDa. This protein, named sheath-associated protein (Sap), shows homology with bacterial adhesins and eukaryotic calcium-dependent adherent proteins (cadherin). Most importantly, we showed that calcium ions mediate the assembly of the tubular-shaped sheath and disintegration of the sheath was deleterious for smooth swimming of MO-1 cells. The disintegrated sheath was efficiently reconstituted in vitro by adding calcium ions. Altogether, these results demonstrate a novel bacterial Ca(2+) -dependent surface architecture, which is essential for bacterial swimming.  相似文献   

3.
A protein oligomer with an approximate molecular weight of its 37-kDa monomer form was purified from the cell envelope fraction of Vibrio damsela cells. This oligomer exhibited strong porin activity when reconstituted into proteoliposomes with phosphatidyl choline. The functional properties for the 37-kDa protein suggest that it is a nonspecific or general porin, with an apparent pore size of 1.6 nm. This porin allows penetration of a variety of hydrophilic solutes according to their molecular mass. After electroelution, the oligomer was partially dissociated into monomers, whereas treatment with EDTA did not affect its dissociation. The monomers of the 37-kDa protein were not active in the reconstitution assay. The effect of culture media on the composition of the outer membrane protein of V. damsela was examined. Only one outer membrane protein with an apparent molecular weight of 37 kDa (37-kDa protein) was formed in cells grown in 3% NaCl–BHI broth and in 3% NaCl–nutrient broth with the addition of 2% glucose. Three outer membrane proteins, with apparent molecular weights of 37 kDa, 40 kDa, and 46 kDa, were produced in cells grown in 3% NaCl–nutrient broth. An additional outer membrane protein with an apparent molecular weight of 44 kDa (44-kDa protein) was found in cells grown in 3% NaCl–nutrient broth with the addition of 2% maltose. This protein was found to exhibit specificity to maltose derivatives. The results obtained in this study confirm the porin-like character of discussed proteins and give a basis for advanced study of those proteins. Received: 16 June 1998 / Accepted: 18 July 1998  相似文献   

4.
The YscC protein of Yersinia enterocolitica is essential for the secretion of anti-host factors, called Yops, into the extracellular environment. It belongs to a family of outer membrane proteins, collectively designated secretins, that participate in a variety of transport processes. YscC has been shown to exist as a stable oligomeric complex in the outer membrane. The production of the YscC complex is regulated by temperature and is reduced in strains carrying mutations in the yscN-U operon or in the virG gene. The VirG lipoprotein was shown to be required for efficient targeting of the complex to the outer membrane. Electron microscopy revealed that purified YscC complexes form ring-shaped structures of ≈20 nm with an apparent central pore. Because of the architecture of the multimer, YscC appears to represent a novel type of channel-forming proteins in the bacterial outer membrane.  相似文献   

5.
Nuclear pore complexes (NPCs) assemble at the end of mitosis during nuclear envelope (NE) reformation and into an intact NE as cells progress through interphase. Although recent studies have shown that NPC formation occurs by two different molecular mechanisms at two distinct cell cycle stages, little is known about the molecular players that mediate the fusion of the outer and inner nuclear membranes to form pores. In this paper, we provide evidence that the transmembrane nucleoporin (Nup), POM121, but not the Nup107-160 complex, is present at new pore assembly sites at a time that coincides with inner nuclear membrane (INM) and outer nuclear membrane (ONM) fusion. Overexpression of POM121 resulted in juxtaposition of the INM and ONM. Additionally, Sun1, an INM protein that is known to interact with the cytoskeleton, was specifically required for interphase assembly and localized with POM121 at forming pores. We propose a model in which POM121 and Sun1 interact transiently to promote early steps of interphase NPC assembly.  相似文献   

6.
The protein which can be labelled by low concentrations of dicyclohexylcarbodiimide in the Mr region of 30 000-35 000 has been purified from pig heart mitochondria with a high yield and as a single band of apparent Mr 35 000 in dodecyl sulphate-containing gels. The protein is not identical with the phosphate carrier as suggested before, since the two proteins behave differently during isolation. Incorporation of the isolated 35 kDa dicyclohexylcarbodiimide-binding protein into lipid bilayer membranes causes an increase of the membrane conductance in definite steps, due to the formation of pores. The specific pore-forming activity increases during the purification procedure. The single pore conductance is about 4.0 nS, suggesting a diameter of 1.7 nm of the open pore. The pore conductance is dependent on the voltage across the membrane. Anion permeability of the pore is higher than cation permeability. These properties are similar to those described for isolated mitochondrial and bacterial porins. It is concluded that the 35 kDa dicyclohexylcarbodiimide-binding protein from pig heart mitochondria is identical with porin from outer mitochondrial membrane.  相似文献   

7.
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic crenarchaeon was found to possess a new CO(2) fixation pathway, the dicarboxylate/4-hydroxybutyrate cycle. The primary acceptor molecule for this pathway is acetyl coenzyme A (acetyl-CoA), which is regenerated in the cycle via the characteristic intermediate 4-hydroxybutyrate. In the presence of acetate, acetyl-CoA can alternatively be formed in a one-step mechanism via an AMP-forming acetyl-CoA synthetase (ACS). This enzyme was identified after membrane preparation by two-dimensional native PAGE/SDS-PAGE, followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry and N-terminal sequencing. The ACS of I. hospitalis exhibits a molecular mass of ~690 kDa with a monomeric molecular mass of 77 kDa. Activity tests on isolated membranes and bioinformatic analyses indicated that the ACS is a constitutive membrane-associated (but not an integral) protein complex. Unexpectedly, immunolabeling on cells of I. hospitalis and other described Ignicoccus species revealed that the ACS is localized at the outermost membrane. This perfectly coincides with recent results that the ATP synthase and the H(2):sulfur oxidoreductase complexes are also located in the outermost membrane of I. hospitalis. These results imply that the intermembrane compartment of I. hospitalis is not only the site of ATP synthesis but may also be involved in the primary steps of CO(2) fixation.  相似文献   

8.
Shedding light on the mitochondrial permeability transition   总被引:1,自引:0,他引:1  
The mitochondrial permeability transition is an increase of permeability of the inner mitochondrial membrane to ions and solutes with an exclusion size of about 1500Da. It is generally accepted that the permeability transition is due to opening of a high-conductance channel, the permeability transition pore. Although the molecular nature of the permeability transition pore remains undefined, a great deal is known about its regulation and role in pathophysiology. This review specifically covers the characterization of the permeability transition pore by chemical modification of specific residues through photoirradiation of mitochondria after treatment with porphyrins. The review also illustrates the basic principles of the photodynamic effect and the mechanisms of phototoxicity and discusses the unique properties of singlet oxygen generated by specific porphyrins in discrete mitochondrial domains. These experiments provided remarkable information on the role, interactions and topology of His and Cys residues in permeability transition pore modulation and defined an important role for the outer membrane 18kDa translocator protein (formerly known as the peripheral benzodiazepine receptor) in regulation of the permeability transition.  相似文献   

9.
Cross-linking analysis of yeast mitochondrial outer membrane   总被引:2,自引:0,他引:2  
By enrichment of contact sites between the two mitochondrial boundary membranes it has been shown that this fraction contained a high activity of glutathione transferase and hexokinase which was bound to the outer membrane pore protein (Ohlendieck, K. et al. (1986) Biochim. Biophys. Acta 860, 672-689). Therefore, an interaction between the three proteins in the contact sites has been suggested. Cross-linking experiments with isolated outer membrane of yeast mitochondria show that glutathione transferase and the pore protein are already associated in the free outer membrane. Porin appeared to adopt four different oligomeric complexes in the membrane, including interactions with a 14 kDa polypeptide, which has glutathione transferase activity. The latter polypeptide could be phosphorylated by intrinsic or extrinsic protein kinases, while the porin itself was not phosphorylated. Yeast hexokinase, when bound to the outer membrane, was able to cross-link to the pore protein.  相似文献   

10.
The outer sheath carrying a polygonal array was isolated from an oral treponeme, Treponema sp. strain E-21, by disruption of cells by means of repeated freeze-thawing and by removal of flagella under acidic conditions followed by linear sucrose density gradient centrifugation. Electron microscopy revealed that the outer sheath was isolated as a triple-layered vesicle having a polygonal array, free of flagella and wall membrane complex. Using optical diffraction, negatively stained preparations of the outer sheath fragments showed that the polygonal array appeared to be composed of a hexagonal pattern with a predominant spacing of about 16.3 nm. The isolated outer sheath contained 49.7% protein, 30.8% total lipid, and 11.0% carbohydrate. Phospholipid comprised about 95% of the total lipid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the outer sheath was composed primarily of one major protein with an apparent molecular weight of about 62,000. The material from the isolated outer sheath solubilized with 1% sodium deoxycholate was reassembled into vesicles having a roughly polygonal array upon removal of the detergent by dialysis against 10 mM Tris-hydrochloride buffer with or without Mg2+.  相似文献   

11.
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion.  相似文献   

12.
Abstract The outer membrane (OM) structure of Nitrosospira sp. X101 was studied by different electron microscopic techniques and SDS-PAGE. A crystalline outer membrane protein was visible in freeze-etched cells, occasionally seen also in the thin sectioned cells, but was difficult to see in a negatively-stained preparation. The lattice probably consists of large globular protein subunits with a hexagonal arrangement. The molecular weights of the major proteins in the cell envelope are 35 kDa, 40 kDa and 42 kDa.  相似文献   

13.
Proteins targeted to mitochondria are transported into the organelle through a high molecular weight complex called the translocase of the outer mitochondrial membrane (TOM). At the core of this machinery is a multisubunit general import pore (GIP) of 400 kDa. Here we report the assembly of the yeast GIP that involves two successive intermediates of 250 kDa and 100 kDa. The precursor of the channel-lining Tom40 is first targeted to the membrane via the receptor proteins Tom20 and Tom22; it then assembles with Tom5 to form the 250 kDa intermediate exposed to the intermembrane space. The 250 kDa intermediate is followed by the formation of the 100 kDa intermediate that associates with Tom6. Maturation to the 400 kDa complex occurs by association of Tom7 and Tom22. Tom7 functions by promoting both the dissociation of the 400 kDa complex and the transition from the 100 kDa intermediate to the mature complex. These results indicate that the dynamic conversion between the 400 kDa complex and the 100 kDa late intermediate allows integration of new precursor subunits into pre-existing complexes.  相似文献   

14.
One of the major outer membrane proteins of yeast mitochondria was isolated and purified. It migrated as a single band with an apparent molecular weight of 30 kDa on a SDS-electrophoretogram. When reconstituted in lipid bilayer membranes the protein formed pores with a single channel conductance of 0.45 nS in 0.1 M KCl. The pores had the characteristics of general diffusion pores with an estimated diameter of 1.7 nm. The pore of mitochondrial outer membranes of yeast shared some similarities with the pores formed by mitochondrial and bacterial porins. The pores switched to substates at voltages higher than 20 mV. The possible role of this voltagedependence in the metabolism of mitochondria is discussed.  相似文献   

15.
Mycobacteria protect themselves with an outer lipid bilayer, which is the thickest biological membrane hitherto known and has an exceptionally low permeability rendering mycobacteria intrinsically resistant to many antibiotics. Pore proteins spanning the outer membrane mediate the diffusion of hydrophilic nutrients. Mycobacterium tuberculosis possesses at least two porins in addition to the low activity channel protein OmpATb. OmpATb is essential for adaptation of M. tuberculosis to low pH and survival in macrophages and mice. The channel activity of OmpATb is likely to play a major role in the defence of M. tuberculosis against acidification within the phagosome of macrophages. MspA is the main porin of Mycobacterium smegmatis. It forms a tetrameric complex with a single central pore of 10 nm length and a cone-like structure. This structure differs clearly from that of the trimeric porins of Gram-negative bacteria, which form one 4 nm long pore per monomer. The 45-fold lower number of porins compared to Gram-negative bacteria and the exceptional length of the pores are two major determinants of the low permeability of the outer membrane of M. smegmatis for hydrophilic solutes. The importance of the synergism between slow transport through the porins and drug efflux or inactivation for the development of drugs against M. tuberculosis is discussed.  相似文献   

16.
Reconstitution of a chloroplast protein import channel.   总被引:17,自引:0,他引:17       下载免费PDF全文
S C Hinnah  K Hill  R Wagner  T Schlicher    J Soll 《The EMBO journal》1997,16(24):7351-7360
The chloroplastic outer envelope protein OEP75 with a molecular weight of 75 kDa probably forms the central pore of the protein import machinery of the outer chloroplastic membrane. Patch-clamp analysis shows that heterologously expressed, purified and reconstituted OEP75 constitutes a voltage-gated ion channel with a unit conductance of Lambda = 145pS. Activation of the OEP75 channel in vitro is completely dependent on the magnitude and direction of the voltage gradient. Therefore, movements of protein charges of parts of OEP75 in the membrane electric field are required either for pore formation or its opening. In the presence of precursor protein from only one side of the bilayer, strong flickering and partial closing of the channel was observed, indicating a specific interaction of the precursor with OEP75. The comparatively low ionic conductance of OEP75 is compatible with a rather narrow aqueous pore (dporeapproximately equal to 8-9 A). Provided that protein and ion translocation occur through the same pore, this implies that the environment of the polypeptide during the transit is mainly hydrophilic and that protein translocation requires almost complete unfolding of the precursor.  相似文献   

17.
Mycobacteria protect themselves with an outer lipid bilayer, which is the thickest biological membrane hitherto known and has an exceptionally low permeability rendering mycobacteria intrinsically resistant against many antibiotics. Pore proteins mediate the diffusion of hydrophilic nutrients across this membrane. Electron microscopy revealed that the outer membrane of Mycobacterium smegmatis contained about 1000 protein pores per microm(2), which are about 50-fold fewer pores per microm(2) than in Gram-negative bacteria. The projection structure of the major porin MspA of M. smegmatis was determined at 17 A resolution. MspA forms a cone-like tetrameric complex of 10 nm in length with a single central pore. Thus, MspA is drastically different from the trimeric porins of Gram-negative bacteria and represents a new class of channel proteins. The formation of MspA micelles indicated that the ends of MspA have different hydrophobicities. Oriented insertion of MspA into membranes was demonstrated in lipid bilayer experiments, which revealed a strongly asymmetrical voltage gating of MspA channels at -30 mV. The length of MspA is sufficient to span the outer membrane and contributes in combination with the tapering end of the pore and the low number of pores to the low permeability of the cell wall of M. smegmatis for hydrophilic compounds.  相似文献   

18.
The cell nucleus is surrounded by a double membrane system, the nuclear envelope (NE), with the outer nuclear membrane being continuous with the endoplasmic reticulum. Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes, forming aqueous channels that allow free diffusion of small molecules but that also mediate the energy-dependent transport of large macromolecules. The NPC represents the largest known molecular complex and is composed of about 30 different proteins, termed nucleoporins (Nups). Here, we review recent studies that provide novel insight into the structural and functional organization of nucleocytoplasmic transport. In addition, prospects towards a high resolution model of the nuclear pore are discussed.  相似文献   

19.
A major outer membrane protein with an apparent molecular weight of 42 kDa was purified from Serratia liquefaciens grown on Brain Heart Infusion medium. The same protein was obtained when the cells were grown on a synthetic medium supplemented with 2% glucose. The amino acid composition of this protein revealed it to be hydrophilic. The pore-forming ability of the 42-kDa protein was determined by the liposome swelling assay. This assay demonstrated that the protein forms nonspecific channels with a diameter between 1.16 and 1.6 nm. An additional protein with a molecular weight of 47 kDa was obtained on synthetic medium supplemented with maltose. This protein exhibited specific pore-forming ability to maltose and maltodextrins, but was also permeable to other compounds, according to their size. When bacteria were grown on Nutrient Broth medium, two outer membrane proteins with molecular weights of 41 kDa and 42 kDa were produced by the bacteria. All three types of proteins represent monomers of respective oligomers. The monomers did not exhibit pore-forming ability when incorporated into liposomes. We, therefore, propose that the oligomer is the functional unit of a porin capable of forming permeability channels in the outer membrane of Serratia liquefaciens. These results indicate that S. liquefaciens contains several porins exhibiting specific osmoregulation or that are induced by a specific nutrient, where the 42-kDa outer membrane protein of this bacterium is certainly a major porin. Received: 6 July 1998 / Accepted: 19 August 1998  相似文献   

20.
Conformational changes of the in situ nuclear pore complex.   总被引:6,自引:0,他引:6       下载免费PDF全文
By bridging the double membrane separating the cell nucleus and cytoplasm, nuclear pore complexes (NPCs) are crucial pathways for the exchange of ions, proteins, and RNA between these two cellular compartments. A structure in the central lumen of the NPC, called the nuclear transport protein, central granule, or nuclear plug, appeared to gate diffusion of intermediate-sized molecules (10-40 kDa) across the nuclear membranes. Visualization of the NPC required drying and fixation of the specimen for electron and atomic force microscopy (AFM), a requirement that has raised doubts about the physiological relevance of the observation. Here we present AFM images of the outer nuclear membranes and NPCs of Xenopus laevis oocytes under more physiological conditions. Measured under a variety of Ca2+ depletion conditions, the central granule appeared to occupy and occlude the lumen of the pore in >80% of NPCs compared to <10% in controls. In a few instances images were obtained of the same NPCs as the solution was changed from control saline to store depletion conditions, and finally to store repletion conditions. We conclude that the central lumen of the nuclear pore complex undergoes a conformational change in response to depletion of nuclear cisternal Ca2+ levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号