首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the partial amino (N)-terminal amino acid sequence of hepatitis C virus p21 (nonstructural protein 2 [NS2]). Cleavage at the p21 (NS2) N terminus depended on the presence of microsomal membranes. The amino-terminal position of p21 (NS2) was assigned to amino acid 810 of the hepatitis C virus strain IIJ precursor polyprotein. Mutation of the alanine residue at position P1 of the putative cleavage site inhibited membrane-dependent processing. This alteration in processing together with the fact that hydrophobic amino acid residues are clustered upstream of the putative cleavage site suggested the involvement of a signal peptidase(s) in the cleavage. Furthermore, mutation analysis of this possible cleavage site revealed the presence of another microsome membrane-dependent cleavage site upstream of the N terminus of p21 (NS2).  相似文献   

2.
The hepatitis C virus genome encodes a polyprotein precursor that is co- and post-translationally processed by cellular and viral proteases to yield 10 mature protein products (C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Although most cleavages in hepatitis C virus polyprotein precursor proceed to completion during or immediately after translation, the cleavages mediated by a host cell signal peptidase are partial at the E2/p7 and p7/NS2 sites, leading to the production of an E2p7NS2 precursor. The sequences located immediately N-terminally of E2/p7 and p7/NS2 cleavage sites can function as signal peptides. When fused to a reporter protein, the signal peptides of p7 and NS2 were efficiently cleaved. However, when full-length p7 was fused to the reporter protein, partial cleavage was observed, indicating that a sequence located N-terminally of the signal peptide reduces the efficiency of p7/NS2 cleavage. Sequence analyses and mutagenesis studies have also identified structural determinants responsible for the partial cleavage at both the E2/p7 and p7/NS2 sites. Finally, the short distance between the cleavage site of E2/p7 or p7/NS2 and the predicted transmembrane alpha-helix within the P' region might impose additional structural constraints to the cleavage sites. The insertion of a linker polypeptide sequence between P-3' and P-4' of the cleavage site released these constraints and led to improved cleavage efficiency. Such constraints in the processing of a polyprotein precursor are likely essential for hepatitis C virus to post-translationally regulate the kinetics and/or the level of expression of p7 as well as NS2 and E2 mature proteins.  相似文献   

3.
Hepatitis C virus proteins are produced by proteolytic processing of the viral precursor polyprotein that is encoded in the largest open reading frame of the viral genome. Processing of the nonstructural viral polyprotein requires the viral serine-type proteinase present in nonstructural protein 3 (NS3). The cleavage of the junction between NS4B and NS5A is mediated by NS3 only when NS4A is present. NS4A is thought to be a cofactor that enhances the cleavage efficiency of NS3 in hepatitis C virus protein-producing cells. Stable NS3-NS4A complex formation required the N-terminal 22 amino acid residues of NS3. This interaction contributed to stabilization of the NS3 product as well as increased the efficiency of cleavage at the NS4B/5A site. The N-terminal 22 amino acid residues fused to Escherichia coli dihydrofolate reductase also formed a stable complex with NS4A. NS3 derivatives which lacked the N-terminal 22 amino acid residues showed drastically reduced cleavage activity at the NS4B/5A site even in the presence of NS4A. These data suggested that the interaction with NS4A through the 22 amino acid residues of NS3 is primarily important for the NS4A-dependent processing of the NS4B/5A site by NS3.  相似文献   

4.
The NS2 protein of hepatitis C virus is a transmembrane polypeptide.   总被引:17,自引:9,他引:8       下载免费PDF全文
The NS2 protein of hepatitis C virus (HCV) is released from its polyprotein precursor by two proteolytic cleavages. The N terminus of this protein is separated from the E2/p7 polypeptide by a cleavage thought to be mediated by signal peptidase, whereas the NS2-3 junction located at the C terminus is processed by a viral protease. To characterize the biogenesis of NS2 encoded by the BK strain of HCV, we have defined the minimal region of the polyprotein required for efficient cleavage at the NS2-3 site and analyzed the interaction of the mature polypeptide with the membrane of the endoplasmic reticulum (ER). We have observed that although cleavage can occur in vitro in the absence of microsomal membranes, synthesis of the polyprotein precursor in the presence of membranes greatly increases processing at this site. Furthermore, we show that the membrane dependency for efficient in vitro processing varies among different HCV strains and that host proteins located on the ER membrane, and in particular the signal recognition particle receptor, are required to sustain efficient proteolysis. By means of sedimentation analysis, protease protection assay, and site-directed mutagenesis, we also demonstrate that the NS2 protein derived from processing at the NS2-3 site is a transmembrane polypeptide, with the C terminus translocated in the lumen of the ER and the N terminus located in the cytosol.  相似文献   

5.
The hepatitis C virus (HCV) H strain polyprotein is cleaved to produce at least nine distinct products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. In this report, a series of C-terminal truncations and fusion with a human c-myc epitope tag allowed identification of a tenth HCV-encoded cleavage product, p7, which is located between the E2 and NS2 proteins. As determined by N-terminal sequence analysis, p7 begins with position 747 of the HCV H strain polyprotein. p7 is preceded by a hydrophobic sequence at the C terminus of E2 which may direct its translocation into the endoplasmic reticulum, allowing cleavage at the E2/p7 site by host signal peptidase. This hypothesis is supported by the observation that cleavage at the E2/p7 and p7/NS2 sites in cell-free translation studies was dependent upon the addition of microsomal membranes. However, unlike typical cotranslational signal peptidase cleavages, pulse-chase experiments indicate that cleavage at the E2/p7 site is incomplete, leading to the production of two E2-specific species, E2 and E2-p7. Possible roles of p7 and E2-p7 in the HCV life cycle are discussed.  相似文献   

6.
Although responsible for a major health problem worldwide, hepatitis C virus is difficult to study because of the absence of fully permissive cell cultures or experimental animal models other than the chimpanzee. GB virus B (GBV-B), a closely related hepatotropic virus that infects small New World primates and replicates efficiently in primary hepatocyte cultures, is an attractive surrogate model system. However, little is known about processing of the GBV-B polyprotein. Because an understanding of these events is critical to further development of model GBV-B systems, we characterized signal peptidase processing of the polyprotein segment containing the putative structural proteins. We identified the exact N termini of the mature GBV-B envelope proteins, E1 and E2, and the first nonstructural protein, NS2, by direct amino acid sequencing. Interestingly, these studies document the existence of a previously unrecognized 13-kDa protein (p13) located between E2 and NS2 within the polyprotein. We compared the sequence of the p13 protein to that of hepatitis C virus p7, a small membrane-spanning protein with a similar location in the polyprotein and recently identified ion channel activity. The C-terminal half of p13 shows clear homology with p7, suggesting a common function, but the substantially larger size of p13, with 4 rather than 2 predicted transmembrane segments, indicates a different structural organization and/or additional functions. The identification of p13 in the GBV-B polyprotein provides strong support for the hypothesis that ion channel-forming proteins are essential for the life cycle of flaviviruses, possibly playing a role in virion morphogenesis and/or virus entry into cells.  相似文献   

7.
Using as substrates a series of chimeric proteins containing various fragments of the hepatitis C virus precursor polyprotein between Escherichia coli maltose binding protein and dihydrofolate reductase, we analyzed the substrate requirements of hepatitis C viral serine proteinase (Cpro-2) for intermolecular polypeptide cleavage in E. coli. Cpro-2-dependent substrate cleavage was observed in E. coli cells simultaneously transformed with expression plasmids for the Cpro-2 molecule and substrate protein. The cleavage sites were estimated by determining the amino (N)-terminal amino acid sequences of dihydrofolate reductase-fused processed products purified partially by affinity chromatography from the lysates, indicating that cleavage occurred at sites identical to those observed in eukaryotic cells. Mutation analysis using the chimeric substrate indicated that the presence of cysteine and small uncharged residues at positions P1 and P1', respectively, of the putative cleavage site is necessary for cleavage and that acidic residues in the region upstream of the cleavage site are required for efficient cleavage.  相似文献   

8.
The hepatitis C virus (HCV) nonstructural protein 2 (NS2) is a dimeric multifunctional hydrophobic protein with an essential but poorly understood role in infectious virus production. We investigated the determinants of NS2 function in the HCV life cycle. On the basis of the crystal structure of the postcleavage form of the NS2 protease domain, we mutated conserved features and analyzed the effects of these changes on polyprotein processing, replication, and infectious virus production. We found that mutations around the protease active site inhibit viral RNA replication, likely by preventing NS2-3 cleavage. In contrast, alterations at the dimer interface or in the C-terminal region did not affect replication, NS2 stability, or NS2 protease activity but decreased infectious virus production. A comprehensive deletion and mutagenesis analysis of the C-terminal end of NS2 revealed the importance of its C-terminal leucine residue in infectious particle production. The crystal structure of the NS2 protease domain shows that this C-terminal leucine is locked in the active site, and mutation or deletion of this residue could therefore alter the conformation of NS2 and disrupt potential protein-protein interactions important for infectious particle production. These studies begin to dissect the residues of NS2 involved in its multiple essential roles in the HCV life cycle and suggest NS2 as a viable target for HCV-specific inhibitors.An estimated 130 million people are infected with hepatitis C virus (HCV), the etiologic agent of non-A, non-B viral hepatitis. Transmission of the virus occurs primarily through blood or blood products. Acute infections are frequently asymptomatic, and 70 to 80% of the infected individuals are unable to eliminate the virus. Of the patients with HCV-induced chronic hepatitis, 15 to 30% progress to cirrhosis within years to decades after infection, and 3 to 4% of patients develop hepatocellular carcinoma (17). HCV infection is a leading cause of cirrhosis, end-stage liver disease, and liver transplantation in Europe and the United States (7), and reinfection after liver transplantation occurs almost universally. There is no vaccine available, and current HCV therapy of pegylated alpha interferon in combination with ribavirin leads to a sustained response in only about 50% of genotype 1-infected patients.The positive-stranded RNA genome of HCV is about 9.6 kb in length and encodes a single open reading frame flanked by 5′ and 3′ nontranslated regions (5′ and 3′ NTRs). The translation product of the viral genome is a large polyprotein containing the structural proteins (core, envelope proteins E1 and E2) in the N-terminal region and the nonstructural proteins (p7, nonstructural protein 2 [NS2], NS3, NS4A, NS4B, NS5A, and NS5B) in the C-terminal region. The individual proteins are processed from the polyprotein by various proteases. The host cellular signal peptidase cleaves between core/E1, E1/E2, E2/p7, and p7/NS2, and signal peptide peptidase releases core from the E1 signal peptide. Two viral proteases, the NS2-3 protease and the NS3-4A protease, cleave the remainder of the viral polyprotein in the nonstructural region (22, 27). The structural proteins package the genome into infectious particles and mediate virus entry into a naïve host cell; the nonstructural proteins NS3 through NS5B form the RNA replication complex. p7 and NS2 are not thought to be incorporated into the virion but are essential for the assembly of infectious particles (14, 36); however, their mechanisms of action are not understood.NS2 (molecular mass of 23 kDa) is a hydrophobic protein containing several transmembrane segments in the N-terminal region (5, 9, 32, 39). The C-terminal half of NS2 and the N-terminal third of NS3 form the NS2-3 protease (10, 11, 26, 37). NS2 is not required for the replication of subgenomic replicons, which span NS3 to NS5B (20). However, cleavage at the NS2/3 junction is necessary for replication in chimpanzees (16), the full-length replicon (38), and in the infectious tissue culture system (HCVcc) (14). Although cleavage can occur in vitro in the absence of microsomal membranes, synthesis of the polyprotein precursor in the presence of membranes greatly increases processing at the NS2/3 site (32). In vitro studies indicate that purified NS2-3 protease is active in the absence of cellular cofactors (11, 37). In addition to its role as a protease, NS2 has been shown to be required for assembly of infectious intracellular virus (14). The N-terminal helix of NS2 was first implicated in infectivity by the observation that an intergenotypic breakpoint following this transmembrane segment resulted in higher titers of infectious virus (28). Structural and functional characterization of the NS2 transmembrane region has shown that this domain is essential for infectious virus production (13). In particular, a central glycine residue in the first NS2 helix plays a critical role in HCV infectious virus assembly (13). The NS2 protease domain, but not its catalytic activity, is also essential for infectious virus assembly, whereas the unprocessed NS2-3 precursor is not required (13, 14).The crystal structure of the postcleavage NS2 protease domain (NS2pro, residues 94 to 217), revealed a dimeric cysteine protease containing two composite active sites (Fig. 2C; [21]). Two antiparallel α-helices make up the N-terminal subdomain, followed by an extended crossover region, which positions the β-sheet-rich C-terminal subdomain near the N-terminal region of the partner monomer. Two of the conserved residues of the catalytic triad (His 143, Glu 163) are located in the loop region after the second N-terminal helix of one monomer, while the third catalytic residue, Cys 184, is located in the C-terminal subdomain of the other monomer. Creation of this unusual pair of composite active sites through NS2 dimerization has been shown to be essential for autoproteolytic cleavage (21). The structure of NS2pro further demonstrated that the C-terminal residue of NS2 remains bound in the active site after cleavage, suggesting a possible mechanism for restriction of this enzyme to a single proteolytic event (21). Here we have used the crystal structure of NS2pro, along with sequence alignments, to target conserved residues in each of the NS2pro structural regions. Our mutational analysis revealed that the residues in the dimer crossover region and the C-terminal subdomain are important for infectious virus production. In contrast, the majority of amino acids in the active site pocket were not required for infectivity. Interestingly, we observed that the extreme C-terminal leucine of NS2 is absolutely essential for generation of infectious virus, as mutations, deletions, and extensions into NS3 are very poorly tolerated. This analysis begins to dissect the determinants of the multiple functions of this important protease in the HCV life cycle.  相似文献   

9.
A transient protein expression system in COS-1 cells was used to study the role of hepatitis C virus (HCV)-encoded NS4A protein on HCV nonstructural polyprotein processing. By analyzing the protein expression and processing of a deletion mutant polypeptide, NS delta 4A, which encodes the entire putative HCV nonstructural polyprotein except the region encoding NS4A, the versatile functions of NS4A were revealed. Most of the NS3 processed from NS delta 4A was localized in the cytosol fraction and was degraded promptly. Coproduction of NS4A stabilizes NS3 and assists in its localization in the membrane. NS4A was found to be indispensable for cleavage at the 4B/5A site but not essential for cleavage at the 5A/5B site in NS delta 4A. The functioning of NS4A as a cofactor for cleavage at the 4B/5A site was also observed when 30 amino acids around this site was used as a substrate and a serine proteinase domain of 167 amino acids, from Gly-1049 to Ser-1215, was used as an enzyme protein, suggesting that possible domains for the interaction of NS4A were in those regions of the enzyme protein (NS3) and/or the substrate protein. Two proteins, p58 and p56, were produced from NS5A. For the production of p58, equal or excess molar amounts of NS4A relative to NS delta 4A were required. Deletion analysis of NS4A revealed a minimum functional domain of NS4A of 10 amino acids, from Gly-1678 to Ile-1687.  相似文献   

10.
K E Reed  A Grakoui    C M Rice 《Journal of virology》1995,69(7):4127-4136
Cleavage at the 2/3 site of hepatitis C virus (HCV) is thought to be mediated by a virus-encoded protease composed of the region of the polyprotein encoding NS2 and the N-terminal one-third of NS3. This protease is distinct from the NS3 serine protease, which is responsible for downstream cleavages in the nonstructural region. Site-directed mutagenesis of residues surrounding the 2/3 cleavage site showed that cleavage is remarkably resistant to single-amino-acid substitutions from P5 to P3' (GWRLL decreases API). The only mutations which dramatically inhibited cleavage were the ones most likely to alter the conformation of the region, such as Pro substitutions at the P1 or P1' position, deletion of both amino acids at P1 and P1', or simultaneous substitution of multiple Ala residues. Cotransfection experiments were done to provide additional information on the polypeptide requirements for bimolecular cleavage. Polypeptides used in these experiments contained amino acid substitutions and/or deletions in NS2 and/or the N-terminal one-third of NS3. Polypeptides with defects in either NS2 or the N-terminal portion of NS3 but not both were cleaved when cotransfected with constructs expressing intact versions of the defective region. Cotransfection experiments also showed that certain defective NS2-3 constructs partially inhibited cleavage of wild-type polypeptides. Although these results show that inefficient cleavage can occur in a bimolecular reaction, they suggest that both molecules must contribute a functional subunit to allow formation of a protease which is capable of cleavage at the 2/3 site. This reaction may resemble the cis cleavage thought to occur at the 2/3 site during processing of the wild-type HCV polyprotein.  相似文献   

11.
Recombinant vaccinia viruses were used to study the processing of hepatitis C virus (HCV) nonstructural polyprotein precursor. HCV-specific proteins and cleavage products were identified by size and by immunoprecipitation with region-specific antisera. A polyprotein beginning with 20 amino acids derived from the carboxy terminus of NS2 and ending with the NS5B stop codon (amino acids 1007 to 3011) was cleaved at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B sites, whereas a polyprotein in which the putative active site serine residue was replaced by an alanine remained unprocessed, demonstrating that the NS3-encoded serine-type proteinase is essential for cleavage at these sites. Processing of the NS3'-5B polyprotein was complex and occurred rapidly. Discrete polypeptide species corresponding to various processing intermediates were detected. With the exception of NS4AB-5A/NS5A, no clear precursor-product relationships were detected. Using double infection of cells with vaccinia virus recombinants expressing either a proteolytically inactive NS3'-5B polyprotein or an active NS3 proteinase, we found that cleavage at the NS4A/4B, NS4B/5A, and NS5A/5B sites could be mediated in trans. Absence of trans cleavage at the NS3/4A junction together with the finding that processing at this site was insensitive to dilution of the enzyme suggested that cleavage at this site is an intramolecular reaction. The trans-cleavage assay was also used to show that (i) the first 211 amino acids of NS3 were sufficient for processing at all trans sites and (ii) small deletions from the amino terminus of NS3 selectively affected cleavage at the NS4B/5A site, whereas more extensive deletions also decreased processing efficiencies at the other sites. Using a series of amino-terminally truncated substrate polyproteins in the trans-cleavage assay, we found that NS4A is essential for cleavage at the NS4B/5A site and that processing at this site could be restored by NS4A provided in cis (i.e., together with the substrate) or in trans (i.e., together with the proteinase). These results suggest that in addition to the NS3 proteinase, NS4A sequences play an important role in HCV polyprotein processing.  相似文献   

12.
We developed an in vitro translation extract from Krebs-2 cells that translates the entire open reading frame of the hepatitis C virus (HCV) strain H77 and properly processes the viral protein precursors when supplemented with canine microsomal membranes (CMMs). Translation of the C-terminal portion of the viral polyprotein in this system is documented by the synthesis of NS5B. Evidence for posttranslational modification of the viral proteins, the N-terminal glycosylation of E1 and the E2 precursor (E2-p7), and phosphorylation of NS5A is presented. With the exception of NS3, efficient generation of all virus-specific proteins is CMM dependent. A time course of the appearance of HCV products indicates that the viral polyprotein is cleaved cotranslationally. A competitive inhibitor of the NS3 protease inhibited accumulation of NS3, NS4B, NS5A, and NS5B, but not that of NS2 or structural proteins. CMMs also stabilized HCV mRNA during translation. Finally, the formyl-[35S]methionyl moiety of the initiator tRNA(Met) was incorporated exclusively into the core protein portion of the polyprotein, demonstrating that translation initiation in this system occurs with high fidelity.  相似文献   

13.
The cleavage of the hepatitis C virus polyprotein between the nonstructural proteins NS2 and NS3 is mediated by the NS2/3 protease, whereas the NS3 protease is responsible for the cleavage of the downstream proteins. Purification and in vitro characterization of the NS2/3 protease has been hampered by its hydrophobic nature. NS2/3 protease activity could only be detected in cells or in in vitro translation assays with the addition of microsomal membranes or detergent. To facilitate purification of this poorly characterized protease, we truncated the N-terminal hydrophobic domain, resulting in an active enzyme with improved biophysical properties. We define a minimal catalytic region of NS2/3 protease retaining autocleavage activity that spans residues 904-1206 and includes the C-terminal half of NS2 and the N-terminal NS3 protease domain. The NS2/3 (904-1206) variant was purified from Escherichia coli inclusion bodies and refolded by gel filtration chromatography. The purified inactive form of NS2/3 (904-1206) was activated by the addition of glycerol and detergent to induce autocleavage at the predicted site between Leu(1026) and Ala(1027). NS2/3 (904-1206) activity was dependent on zinc ions and could be inhibited by NS4A peptides, peptides that span the cleavage site, or an N-terminal peptidic cleavage product. This NS2/3 variant will facilitate the development of an assay suitable for identifying inhibitors of HCV replication.  相似文献   

14.
The N-terminal part of the NS3 protein from dengue virus contains a trypsin-like serine protease responsible for processing the nonstructural region of the viral polyprotein. Enzymatic activity of the NS2B-NS3(pro) precursor incorporating a full-length NS2B cofactor of dengue virus type 2 was examined by using synthetic dodecamer peptide substrates encompassing native cleavage sequences of the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 polyprotein junctions. Cleavage of the dansylated substrates was monitored by a HPLC-based assay and kinetic parameters for K(1M), k(cat) and k(cat)/K(m) were obtained. The data presented here show that NS2B-NS3(pro) expressed in recombinant E. coli can be renatured to an active protease which reacts in the absence of microsomal membranes with all 4 substrate peptides, albeit the molecule does not exhibit autoproteolytic processing at the NS2B/NS3 site. A marked difference in cleavage efficiency was found for the NS2B/NS3 substrate and the remaining 3 peptides based on the NS2A/NS2B, NS3/NS4A and NS4A/NS5 cleavage sites.  相似文献   

15.
T J Chambers  A Grakoui    C M Rice 《Journal of virology》1991,65(11):6042-6050
The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites.  相似文献   

16.
Processing of the hepatitis C virus polyprotein is accomplished by a series of cotranslational and posttranslational cleavages mediated by host cell signalases and two virally encoded proteinases. Of these the NS3 proteinase is essential for processing at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions. Processing between NS3 and NS4A occurs in cis, implying an intramolecular reaction mechanism, whereas cleavage at the other sites can also be mediated in trans. Sequence analysis of the amino termini of mature cleavage products and comparisons of amino acid residues around the scissile bonds of various hepatitis C virus isolates identified amino acid residues which might contribute to substrate specificity and processing efficiency: an acidic amino acid at the P6 position, a Thr or Cys at the P1 position, and a Ser or Ala at the P1' position. To study the importance of these residues for NS3-mediated cleavage we have undertaken a mutational analysis using an NS3'-5B polyprotein expressed by recombinant vaccinia viruses in mammalian cells. For all NS3-dependent cleavage sites P1 substitutions had the most drastic effects on cleavage efficiency, showing that amino acid residues at this position are the most critical substrate determinants. Since less drastic effects were found for substitutions at the P1' position, these residues appear to be less important for proper cleavage. For all cleavage sites the P6 acidic residue was dispensable, suggesting that it is not essential for substrate recognition and subsequent cleavage. Analysis of a series of mutations at the NS3/4A site revealed great flexibility for substitutions compared with more stringent requirements at the trans cleavage sites. On the basis of these results we propose a model in which processing in cis is determined primarily by polyprotein folding, whereas cleavage in trans is governed not only by the structure of the polyprotein but also by specific interactions between the proteinase and the polyprotein substrate at or around the scissile bond.  相似文献   

17.
C Lin  B M Prgai  A Grakoui  J Xu    C M Rice 《Journal of virology》1994,68(12):8147-8157
The hepatitis C virus H strain (HCV-H) polyprotein is cleaved to produce at least 10 distinct products, in the order of NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. An HCV-encoded serine proteinase activity in NS3 is required for cleavage at four sites in the nonstructural region (3/4A, 4A/4B, 4B/5A, and 5A/5B). In this report, the HCV-H serine proteinase domain (the N-terminal 181 residues of NS3) was tested for its ability to mediate trans-processing at these four sites. By using an NS3-5B substrate with an inactivated serine proteinase domain, trans-cleavage was observed at all sites except for the 3/4A site. Deletion of the inactive proteinase domain led to efficient trans-processing at the 3/4A site. Smaller NS4A-4B and NS5A-5B substrates were processed efficiently in trans; however, cleavage of an NS4B-5A substrate occurred only when the serine proteinase domain was coexpressed with NS4A. Only the N-terminal 35 amino acids of NS4A were required for this activity. Thus, while NS4A appears to be absolutely required for trans-cleavage at the 4B/5A site, it is not an essential cofactor for serine proteinase activity. To begin to examine the conservation (or divergence) of serine proteinase-substrate interactions during HCV evolution, we demonstrated that similar trans-processing occurred when the proteinase domains and substrates were derived from two different HCV subtypes. These results are encouraging for the development of broadly effective HCV serine proteinase inhibitors as antiviral agents. Finally, the kinetics of processing in the nonstructural region was examined by pulse-chase analysis. NS3-containing precursors were absent, indicating that the 2/3 and 3/4A cleavages occur rapidly. In contrast, processing of the NS4A-5B region appeared to involve multiple pathways, and significant quantities of various polyprotein intermediates were observed. NS5B, the putative RNA polymerase, was found to be significantly less stable than the other mature cleavage products. This instability appeared to be an inherent property of NS5B and did not depend on expression of other viral polypeptides, including the HCV-encoded proteinases.  相似文献   

18.
The hepatitis C virus (HCV) is a flavivirus replicating in the cytoplasm of infected cells. The HCV genome is a single-stranded RNA encoding a polyprotein that is cleaved by cellular and viral proteases into 10 different products. While the structural proteins core protein, envelope protein 1 (E1) and E2 build up the virus particle, most nonstructural (NS) proteins are required for RNA replication. One of the least studied proteins is NS2, which is composed of a C-terminal cytosolic protease domain and a highly hydrophobic N-terminal domain. It is assumed that the latter is composed of three trans-membrane segments (TMS) that tightly attach NS2 to intracellular membranes. Taking advantage of a system to study HCV assembly in a hepatoma cell line, in this study we performed a detailed characterization of NS2 with respect to its role for virus particle assembly. In agreement with an earlier report ( Jones, C. T., Murray, C. L., Eastman, D. K., Tassello, J., and Rice, C. M. (2007) J. Virol. 81, 8374-8383 ), we demonstrate that the protease domain, but not its enzymatic activity, is required for infectious virus production. We also show that serine residue 168 in NS2, implicated in the phosphorylation and stability of this protein, is dispensable for virion formation. In addition, we determined the NMR structure of the first TMS of NS2 and show that the N-terminal segment (amino acids 3-11) forms a putative flexible helical element connected to a stable alpha-helix (amino acids 12-21) that includes an absolutely conserved helix side in genotype 1b. By using this structure as well as the amino acid conservation as a guide for a functional study, we determined the contribution of individual amino acid residues in TMS1 for HCV assembly. We identified several residues that are critical for virion formation, most notably a central glycine residue at position 10 of TMS1. Finally, we demonstrate that mutations in NS2 blocking HCV assembly can be rescued by trans-complementation.  相似文献   

19.
Hepatitis C virus (HCV) encodes a polyprotein consisting of core, envelope (E1, E2, p7), and nonstructural polypeptides (NS2, NS3, NS4A, NS4B, NS5A, NS5B). The serine protease (NS3/NS4A), helicase (NS3), and polymerase (NS5B) constitute valid targets for antiviral therapy. We engineered BH3 interacting domain death agonist (BID), an apoptosis-inducing molecule, to contain a specific cleavage site recognized by the NS3/NS4A protease. Cleavage of the BID precursor molecule by the viral protease activated downstream apoptotic molecules of the mitochondrial pathway and triggered cell death. We extended this concept to cells transfected with an infectious HCV genome, hepatocytes containing HCV replicons, a Sindbis virus model for HCV, and finally HCV-infected mice with chimeric human livers. Infected mice injected with an adenovirus vector expressing modified BID exhibited HCV-dependent apoptosis in the human liver xenograft and considerable declines in serum HCV titers.  相似文献   

20.
Processing of the hepatitis C virus polyprotein is mediated by host cell signalases and at least two virally encoded proteinases. Of these, the serine-type proteinase encompassing the amino-terminal one-third of NS3 is responsible for cleavage at the four sites carboxy terminal of NS3. The activity of this proteinase is modulated by NS4A, a 54-amino-acid polyprotein cleavage product essential for processing at the NS3/4A, NS4A/4B, and NS4B/5A sites and enhancing cleavage efficiency between NS5A and NS5B. Using the vaccinia virus-T7 hybrid system to express hepatitis C virus polypeptides in BHK-21 cells, we studied the role of NS4A in proteinase activation. We found that the NS3 proteinase and NS4A form a stable complex when expressed as a single polyprotein or as separate molecules. Results from deletion mapping show that the minimal NS4A domain required for proteinase activation is located in the center of NS4A between amino acids 1675 and 1686 of the polyprotein. Amino acid substitutions within this domain destabilizing the NS3-NS4A complex also impair trans cleavage at the NS4A-dependent sites. Similarly, deletion of amino-terminal NS3 sequences impairs complex formation as well as cleavage at the NS4B/5A site but not at the NS4A-independent NS5A/5B site. These results suggest that a stable NS3-NS4A interaction is important for cleavage at the NS4A-dependent sites and that amino-terminal NS3 sequences and the central NS4A domain are directly involved in complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号