首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic birds and mammals display a remarkable ability to regenerate axons after spinal injury, but then lose this ability during a discrete developmental transition. To explain this transition, previous research has emphasized the emergence of myelin and other inhibitory factors in the environment of the spinal cord. However, research in other CNS tracts suggests an important role for neuron-intrinsic limitations to axon regeneration. Here we re-examine this issue quantitatively in the hindbrain-spinal projection of the embryonic chick. Using heterochronic cocultures we show that maturation of the spinal cord environment causes a 55% reduction in axon regeneration, while maturation of hindbrain neurons causes a 90% reduction. We further show that young neurons transplanted in vivo into older spinal cord can regenerate axons into myelinated white matter, while older axons regenerate poorly and have reduced growth cone motility on a variety of growth-permissive ligands in vitro, including laminin, L1, and N-cadherin. Finally, we use video analysis of living growth cones to directly document an age-dependent decline in the motility of brainstem axons. These data show that developmental changes in both the spinal cord environment and in brainstem neurons can reduce regeneration, but that the effect of the environment is only partial, while changes in neurons by themselves cause a nearly complete reduction in regeneration. We conclude that maturational events within neurons are a primary cause for the failure of axon regeneration in the spinal cord.  相似文献   

2.
From 1,000 randomly selected colonies from cDNA libraries derived from murine spinal cord subtracted against white matter by means of suppression subtractive hybridization, 220 clones were identified as differentially expressed by dot blot analysis. Sequence analysis by the BLAST programming identified 140 unique genes. (1) The percentage of known sequences from myelin and other glial sources was reduced by approximately 75% over previous, similar subtractions employing visual cortex as the driver. (2) Differentially expressed genes tended to reflect existing expectations concerning structure and function of the spinal cord. (3) About 35% of all genes differentially expressed in the spinal cord in this study are also known to be differentially expressed for this structure as tabulated in the UniGene database. (4) About 33% of all genes differentially expressed in the present study are recorded as not present when measured in the spinal cord according to the UniGene database indicating that present techniques are not recording about a third of differentially expressed genes in this structure. (5) About 15% of all differentially expressed genes are for unknown, putative or hypothetical protein products. (6) About 4% of all differentially expressed genes are novel expressed sequence tags for the mouse. The current study demonstrates the importance of reducing the presence of glial associated sequences when comparing brain regions. It is concluded that the persistence of some myelin sequences in the spinal cord when white matter is used as the driver indicates that myelination is more active in this structure than for those areas represented by white matter and corpus callosum.  相似文献   

3.
Anamniote animals, such as fish and amphibians, are able to regenerate damaged CNS nerves following injury, but regeneration in the mammalian CNS tracts, such as the optic nerve, does not occur. However, severed adult mammalian retinal axons can regenerate into peripheral nerve segments grafted into the brain and this finding has emphasized the importance of the environment in explaining regenerative failure in the adult mammalian CNS. Following lesions, regenerating axons encounter the glial cells, oligodendrocytes and astro-cytes, and their derivatives, respectively myelin and the astrocytic scar. Experiments to investigate the influence of these components on axon growth in culture have revealed cell-surface and extracellular matrix molecules that inhibit axon extension and growth cone motility. Structural and functional characterization of these ligands and their receptors is underway, and may solve the interesting neurobiological conundrum posed by the failure of mammalian CNS regeneration. Simultaneously, this might allow new possibilities for treatment of the severe clinical disabilities resulting from injury to the brain and spinal cord.  相似文献   

4.
Mice lacking the axon guidance molecule EphA4 have been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips?. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wildtype spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage/microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages/activated microglia in injured EphA4 knockout compared to wild-type spinal cords at 2, 4 or 14 days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages/activated microglia was observed in EphA4 knockout spinal cords at 4 days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury.  相似文献   

5.
Ding Q  Wu Z  Guo Y  Zhao C  Jia Y  Kong F  Chen B  Wang H  Xiong S  Que H  Jing S  Liu S 《Proteomics》2006,6(2):505-518
The inability of the CNS to regenerate in adult mammals propels us to reveal associated proteins involved in the injured CNS. In this paper, either thoracic laminectomy (as sham control) or thoracic spinal cord transection was performed on male adult rats. Five days after surgery, the whole spinal cord tissue was dissected and fractionated into water-soluble (dissolved in Tris buffer) and water-insoluble (dissolved in a solution containing chaotropes and surfactants) portions for 2-DE. Protein identification was performed by MS and further confirmed by Western blot. As a result, over 30 protein spots in the injured spinal cord were shown to be up-regulated no less than 1.5-fold. These identified proteins possibly play various roles during the injury and repair process and may be functionally categorized as several different groups, such as stress-responsive and metabolic changes, lipid and protein degeneration, neural survival and regeneration. In particular, over-expression of 11-zinc finger protein and glypican may be responsible for the inhibition of axonal growth and regeneration. Moreover, three unknown proteins with novel sequences were found to be up-regulated by spinal cord injury. Further characterization of these molecules may help us come closer to understanding the mechanisms that underlie the inability of the adult CNS to regenerate.  相似文献   

6.
DNA levels were measured in the spinal cords of Lewis rats during the development of and recovery from experimental allergic encephalomyelitis (EAE). Spinal cord DNA was first increased 11 days after immunizing the rats with guinea pig myelin and rose to levels four times that of the Freund's adjuvant controls at day 14, then subsided after day 22. Spinal cord DNA was still 150% of control levels 60 days after immunization. These DNA changes were compared with fluctuations in spinal cord acid proteinase in the same animals. Acid proteinase activity in EAE spinal cord increased later than the rise in DNA and attained a level of 170% of control at days 15-17, then subsided. Spinal cord DNA was higher in rats immunized with whole myelin than in those administered equivalent amounts of purified myelin basic protein. Furthermore DNA was higher in spinal cords of rats immunized with a larger dose of myelin (1.0 mg) than with a lower amount (0.5 mg). Various protease inhibitors including pepstatin, nitrophenyl p-guanidino benzoate, polylysine, and dipropionyl rhein, previously shown to protect Lewis rats against EAE, suppressed the increase of DNA in the spinal cord. Measurement of DNA increases in the spinal cord of EAE animals provides a convenient reproducible measurement of the severity of inflammation in the CNS and provides an objective criterion for assessment of the efficacy of various agents screened as possible therapeutic treatment for multiple sclerosis.  相似文献   

7.
Comparison of cDNA libraries derived from the spinal cord with those derived from the visual cortex by means of forward and reverse subtractive hybridization resulted in the cataloguing of 60 genes differentially expressed in the spinal cord. 1. The differentially expressed genes represent a mixture of novel and known sequences with known and unknown protein products. 2. The possibility that the subtraction process was simply overwhelmed by background sequences was significantly reduced by several observations including comparisons between suppression subtractive hybridization (SSH) and mirror orientation selection (MOS). 3. Nearly half of all genes up-regulated in the spinal cord are of myelin origin. 4. Twenty-five percent of all up-regulated clones in the spinal cord versus the visual cortex are for proteolipid protein. 5. Ten percent of all up-regulated clones in spinal cord versus visual cortex are for ferretin heavy chain, which is known to be produced in oligodendroglial cells in the CNS. 6. Two of the up-regulated sequences, proteolipid protein and N-myc down-regulated gene 4, are identified with genes known to directly affect neuron survival. 7. Two of the up-regulated genes, ferritin and transferrin, are indirectly associated with apoptosis through their ability to sequester iron and reduce free radical formation.  相似文献   

8.
Cyclic AMP (cAMP) is an important second messenger in signaling pathways that regulate cellular processes involved in development and regeneration. The changes in cAMP content of opossum spinal cords have been studied during the critical period of development, when the ability to regenerate axons after injury is lost. Endogenous cAMP levels were measured in tissue homogenates, and cAMP immunoreactivity was displayed in sections of lesioned and non-lesioned opossum P6 (can regenerate) and P13 (cannot regenerate) spinal cords. There was a significant decrease of the cAMP levels during the period critical for regeneration, while the level of cAMP was increased in P6 spinal cords after injury. Moreover, 5 mM db-cAMP induced growth in vitro of the injured axons in the spinal cord that has lost the capacity to regenerate.  相似文献   

9.
Injured axons in mammalian peripheral nerves often regenerate successfully over long distances, in contrast to axons in the brain and spinal cord (CNS). Neurite growth-inhibitory proteins, including the recently cloned membrane protein Nogo-A, are enriched in the CNS, in particular in myelin. Nogo-A is not detectable in peripheral nerve myelin. Using regulated transgenic expression of Nogo-A in peripheral nerve Schwann cells, we show that axonal regeneration and functional recovery are impaired after a sciatic nerve crush. Nogo-A thus overrides the growth-permissive and -promoting effects of the lesioned peripheral nerve, demonstrating its in vivo potency as an inhibitor of axonal regeneration.  相似文献   

10.
Norepinephrine and dopamine concentrations were determined by radioenzymatic assay in discrete gray matter regions of the spinal cords of rats with experimental allergic encephalomyelitis (EAE). Norepinephrine was depleted in most spinal cord regions of EAE rats compared with controls, whereas dopamine depletion in EAE rats was restricted to the cervical dorsal horn. There was a rostrocaudal gradient of norepinephrine reduction in the spinal cords of the EAE rats with most severe depletion in the lumbar region. The results of this experiment confirmed recent anatomical observations that suggested that catecholamine-fluorescent axons and terminals were damaged in spinal cords of rats with EAE.  相似文献   

11.
Myelin was purified from the spinal cords of normal mice and mice heterozygous for the shiverer mutation, and measurements were made of the major myelin proteins and lipids and the specific activities of three myelin-associated enzymes. The myelin purified from the spinal cords of the heterozygotes (shi/+) was deficient by 30-40% in yield and had an apparently unique composition. In particular, when compared with normal mouse spinal cord myelin, there were more high-molecular-weight protein, less myelin basic protein, a higher protein-to-lipid ratio, and higher specific activities of 2',3'-cyclic nucleotide-3'-phosphohydrolase (EC 3.1.4.37) and carbonic anhydrase (EC 4.2.1.1) in the myelin purified from the shi/+ animals. These abnormalities were reflected in the composition of shi/+ whole spinal cord, where the protein-to-lipid ratio was intermediate between the respective values for +/+ and shi/shi spinal cords. Whole brains from shi/+ mice showed deficiencies in galactocerebroside and galactocerebroside sulfate and an increase in total phospholipid, and the lipid composition in the brains of the shi/shi mice was similar to that reported for another dysmyelinating mutant, quaking. The findings provide the first values for the lipids in normal mouse spinal cord myelin and show that heterozygotes are affected by the shiverer mutation. The observations imply that there can be considerable deviation from the normal CNS myelin content and composition without apparent qualitative morphological abnormalities or loss of function and that the amount of myelin basic protein available during myelination may influence the incorporation of other constituents into the myelin membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Spinal axon regeneration induced by elevation of cyclic AMP   总被引:32,自引:0,他引:32  
Qiu J  Cai D  Dai H  McAtee M  Hoffman PN  Bregman BS  Filbin MT 《Neuron》2002,34(6):895-903
Myelin inhibitors, including MAG, are major impediments to CNS regeneration. However, CNS axons of DRGs regenerate if the peripheral branch of these neurons is lesioned first. We show that 1 day post-peripheral-lesion, DRG-cAMP levels triple and MAG/myelin no longer inhibit growth, an effect that is PKA dependent. By 1 week post-lesion, DRG-cAMP returns to control, but growth on MAG/myelin improves and is now PKA independent. Inhibiting PKA in vivo blocks the post-lesion growth on MAG/myelin at 1 day and attenuates it at 1 week. Alone, injection of db-cAMP into the DRG mimics completely a conditioning lesion as DRGs grow on MAG/myelin, initially, in a PKA-dependent manner that becomes PKA independent. Importantly, DRG injection of db-cAMP results in extensive regeneration of dorsal column axons lesioned 1 week later. These results may be relevant to developing therapies for spinal cord injury.  相似文献   

13.
Kim JE  Liu BP  Park JH  Strittmatter SM 《Neuron》2004,44(3):439-451
Axon regeneration after injury to the adult mammalian CNS is limited in part by three inhibitory proteins in CNS myelin: Nogo-A, MAG, and OMgp. All three of these proteins bind to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth in vitro. To explore the necessity of NgR for responses to myelin inhibitors and for restriction of axonal growth in the adult CNS, we generated ngr(-/-) mice. Mice lacking NgR are viable but display hypoactivity and motor impairment. DRG neurons lacking NgR do not bind Nogo-66, and their growth cones are not collapsed by Nogo-66. Recovery of motor function after dorsal hemisection or complete transection of the spinal cord is improved in the ngr(-/-) mice. While corticospinal fibers do not regenerate in mice lacking NgR, regeneration of some raphespinal and rubrospinal fibers does occur. Thus, NgR is partially responsible for limiting the regeneration of certain fiber systems in the adult CNS.  相似文献   

14.
Multiple sclerosis (MS) is characterized by focal destruction of the white matter of the brain and spinal cord. The exact mechanisms underlying the pathophysiology of the disease are unknown. Many studies have shown that MS is predominantly an autoimmune disease with an inflammatory phase followed by a demyelinating phase. Recent studies alongside current treatment strategies, including glatiramer acetate, have revealed a potential role for brain-derived neurotrophic factor (BDNF) in MS. However, the exact role of BDNF is not fully understood. We used the experimental autoimmune encephalomyelitis (EAE) model of MS in adolescent female Lewis rats to identify the role of BDNF in disease progression. Dorsal root ganglia (DRG) and spinal cords were harvested for protein and gene expression analysis every 3 days post-disease induction (pdi) up to 15 days. We show significant increases in BDNF protein and gene expression in the DRG of EAE animals at 12 dpi, which correlates with peak neurological disability. BDNF protein expression in the spinal cord was significantly increased at 12 dpi, and maintained at 15 dpi. However, there was no significant change in mRNA levels. We show evidence for the anterograde transport of BDNF protein from the DRG to the dorsal horn of the spinal cord via the dorsal roots. Increased levels of BDNF within the DRG and spinal cord in EAE may facilitate myelin repair and neuroprotection in the CNS. The anterograde transport of DRG-derived BDNF to the spinal cord may have potential implications in facilitating central myelin repair and neuroprotection.  相似文献   

15.
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the molecularly complex CNS, can regenerate from a small piece of the planarian body. In this study, a collection of neural markers has been used to characterize at the molecular level how the planarian CNS is rebuilt. Planarian CNS is composed of an anterior brain and a pair of ventral nerve cords that are distinct and overlapping structures in the head region. During regeneration, 12 neural markers have been classified as early, mid-regeneration and late expression genes depending on when they are upregulated in the regenerative blastema. Interestingly, the results from this study show that the comparison of the expression patterns of different neural genes supports the view that at day one of regeneration, the new brain appears within the blastema, whereas the pre-existing ventral nerve cords remain in the old tissues. Three stages in planarian CNS regeneration are suggested.  相似文献   

16.
Spinal cords from clinically affected newborn lambs, each with muscular spasms (‘shaking’) and a ‘hairy’ birth coat, were found to be deficient in DNA and to contain less myelin and various lipid components, suggesting retarded CNS development equivalent to about 124 days conceptual age. Cerebrosides were notably deficient in whole cord and isolated myelin and contained more saturated and less unsaturated fatty acids than normal. The rate of cerebroside synthesis assayed in vitro was enhanced and taken with the very low tissue concentrations this indicated faster cerebroside turnover and a less stable myelin in the spinal cords of lambs affected with Border Disease. Marked decreases in plasmalogen concentrations, the redistribution of phospholipid fractions, the presence of about 8 per cent cholesterol in the esterified form and the characteristic fatty acid composition of these esters strongly suggest that degeneration is concomitant with myelin immaturity. Hypocupraemia, low concentrations of copper in the cerebrum and increased concentrations in spinal cord myelin are additional features of the clinical disease. The latter result may be related to myelin immaturity.  相似文献   

17.
18.
The peripheral branch of primary sensory neurons regenerates after injury, but there is no regeneration when their central branch is severed by spinal cord injury. Here we show that microinjection of a membrane-permeable analog of cAMP in lumbar dorsal root ganglia markedly increases the regeneration of injured central sensory branches. The injured axons regrow into the spinal cord lesion, often traversing the injury site. This result mimics the effect of a conditioning peripheral nerve lesion. We also demonstrate that sensory neurons exposed to cAMP in vivo, when subsequently cultured in vitro, show enhanced growth of neurites and an ability to overcome inhibition by CNS myelin. Thus, stimulating cAMP signaling increases the intrinsic growth capacity of injured sensory axons. This approach may be useful in promoting regeneration after spinal cord injury.  相似文献   

19.
The effects on myelin of autolysis in situ after death and after purification were studied in normal brains and spinal cords and in those made edematous as a result of chronic triethyl tin (TET) feeding. Myelin prepared from normal and edematous brains and spinal cords autolyzed for 12 h at 4°C contained only slightly less basic protein than that prepared from freshly killed animals. The amounts of a light lipid-protein fraction (dissociated myelin) usually obtained during purification of myelin from edematous CNS were about the same in tissue from freshly killed rats and those autolyzed for 12 h at 4°C. Autolysis for 12 h at room temperature resulted in formation of large amounts of dissociated myelin and loss of basic protein, but more dissociation and basic protein loss occurred in CNS from edematous brains and spinal cords than from the normal. Purified myelin prepared from freshly-killed normal and TET-fed rats was incubated at 37°C in media of several ionic strengths. In Krebs-Ringer bicarbonate (physiological extracellular fluid) extensive dissociation of myelin occurred with much less in 0.04 M-Tris buffer, pH 7.2, and only small amounts were formed in 0.01 M-Tris. In all cases myelin from edematous CNS formed more dissociated fraction than did the normal myelin. Basic protein loss was also proportional to the ionic strength of the media, but there was no difference in loss between normal and TET-myelin. Two different factors, proteolysis and physical extraction of basic protein by salt solutions, may be contributing to myelin dissociation and loss of basic protein.  相似文献   

20.
The jimpy mutation of the X-linked proteolipid protein (Plp) gene causes dysmyelination and premature death of the mice. The established phenotype is characterised by severe hypomyelination, increased numbers of dead oligodendrocytes and astrocytosis. The purpose of this study was to define the earliest cellular abnormalities in the cervical spinal cord. We find that on the first and third postnatal days the amount of myelin in jimpy spinal cord is approximately 20% of wild-type. However, the total glial cell density, the number of dead glial cells and the number and distribution of Plp-positive cells, as assessed by in situ hybridization, are similar to wild-type during the first week of life. Immunostaining of cryosections has identified that jimpy spinal cords express on schedule, a variety of antigens associated with mature oligodendrocytes. Dissociated oligodendrocytes, cultured for 18 hours to reflect their in vivo differentiation, express MBP and surface myelin-associated glycoprotein at the same frequency as wild-type. By comparison, the proportion of jimpy oligodendrocytes expressing surface myelin/oligodendrocyte glycoprotein is reduced by approximately 34%. In vivo, however, only a small minority of axons is surrounded by a collar of myelin-associated glycoprotein, suggesting that the majority of jimpy oligodendrocytes fail to make appropriate ensheathment of axons. Although the DM20 isoform is expressed in the embryonic CNS prior to myelin formation, the cellular abnormalities appear to correspond to the time at which the Plp isoform becomes predominant. The results suggest that the primary abnormality in jimpy is the inability of oligodendrocytes to properly associate with, and then ensheath, axons and that oligodendrocyte death compounds, rather than initiates, the established phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号