首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of binding sites for the lectins WGA, DSA. RCA I, PNA, AAA, MAA. SNA, GNA. and Con A in gametes of both sexes of the brown alga, Ectocarpus siliculosus (Dillw.) Lyngbye, was investigated by fluorescence microscopy. Digoxigenin-conjugated lectins and an FITC-anti-digoxigenin antibody were used as a high sensitivity detection system. Organelles and other distinct cellular domains could be distinguished by their binding specificities. Glycoconjugates associated with one flagellum were found to be associated with the axoneme by lectin binding to isolated flagellar apparatuses. In addition, changes in the distribution of carbohydrate epitopes during the attachment of gametes to the substratum were revealed by differential lectin binding.  相似文献   

2.
Four lectins were used to recognize galactose/N-acetyl-galactosamine (Gal/GalNAc) and sialic acid residues in proteins of Chinese hamster metaphase chromosomes. In situ binding pattern of a fluorescein isothiocyanate-labelled (Gal/GalNAc)-specific lectin Sophora japonica agglutinin (SJA) showed that chromosomal SJA-binding proteins are primarily localized to the helically coiled substructure of chromatids. Numerous SJA-binding proteins were identified in Western blots of chromosomal proteins, their molecular weights ranging from 26 to 200kDa. Another Gal/GalNAc-specific lectin, peanut agglutinin (PNA), with a slightly different sugar binding specificity, did not bind to Chinese hamster metaphase chromosomes, and in Western blots only two chromosomal protein bands were faintly stained. The in situ labelling patterns of two sialic acid-specific lectins, Maackia amurensis (MAA) and Sambucus nigra (SNA) agglutinins, both showed that the helically coiled substructure of chromatids is also enriched in sialylated proteins. In Western blot analysis 11 MAA-binding protein bands with molecular weights ranging from 54 to 215kDa were identified, while SNA only bound to one protein band of 67kDa. MAA and SNA are specific for α (2|ad3)- and α (2|ad6)-linked sialic acid residues, respectively. Thus, it is likely that α (2|ad3)-linked sialic acid residues are more common in chromosomal proteins than α(2|ad6)-linked sialic acid residues. These data suggest that Gal/GalNAc and sialic acid-containing glycoproteins exist in metaphase chromosomes and that these proteins may have a role in the formation of higher order metaphase chromosome structures.  相似文献   

3.
Summary The cell surface carbohydrate profile of formalin-fixed paraffin-embedded tissue sections of neoplastic cervical squamous epithelium was evaluated using lectins ofBauhinia purpurea (BPA),Canavalin ensiformis (Con A),Griffonia simplicifolia I (GS I),Griffonia simplicifolia II (GS II),Maclura pomifera (MPA),Archis hypogaea (PNA),Glycine max (SBA),Ulex europaeus I (UEA I) andTriticum vulgaris (WGA). Three lectins (BPA, Con A and PNA) showed a similar pattern of staining in both normal squamous epithelium and in cervical intraepithelial neoplasia (CIN). Variable alterations were seen in lectin-binding patterns in CIN with seven lectins (GS I, GS II, MPA, PNA, SBA, UEA I and WGA). A significant difference was seen between the intensity of staining of normal squamous epithelium and CIN with all lectins except WGA. The alteration in GS II-binding pattern and intensity was significantly related to grade of CIN. No correlation was found between lectin binding and the presence of koilocytes in squamous epithelium. Cases of invasive squamous carcinoma showed a heterogeneous lectin-binding pattern and no siginificant association was found between lectin binding and tumour differentiation or patient survival. These results indicate that neoplasia in cervical squamous epithelium is associated with alterations in terminal -Man residues, - and -GalNAc residues, - and -GlcNAc residues, - and -Gal residues, and -Fuc-containing residues, present in the outer parts of bothN-linked andO-linked glycoconjugates. The implications of these findings are discussed.  相似文献   

4.
Lectin histochemistry study in the human vas deferens   总被引:1,自引:0,他引:1  
The oligosaccharide sequences of glycoconjugates in the normal human vas deferens and the nature of the saccharide linkage were studied by lectin histochemistry. The cytoplasm of all epithelial cell types (principal cells, basal cells, and mitochondria-rich cells) and luminal contents reacted positively with WGA, MAA, PNA, DSA, LTA, UEA-I, AAA, and ConA. The reaction was more intense in the stereocilia of principal cells. Cytoplasmic staining was diffuse except for PNA and DSA labeling which was limited to the apical cytoplasm and stereocilia of columnar cells. The cytoplasm of all cell types also reacted diffusely with HPA, although staining was weak and was not observed in the stereocilia. Positive reaction with SBA only was encountered in the stereocilia of principal cells. SNA, LTA, and DBA were unreactive. GNA-labeling showed a granular distribution in the supranuclear cytoplasm of columnar epithelial cells. Reactions with MAA, PNA, DSA, AAA, HPA and SBA disappeared after the -elimination reaction. Reactions with WGA and UEA-I decreased after -elimination or Endo-F digestion. Reactions with ConA and GNA were suppressed by Endo-F digestion. Reactions with PNA, HPA, and SBA increased after desialylation. Of all the lectins that label the luminal contents of the vas deferens, only UEA-I was not found in the luminal contents of seminiferous tubules and epididymis and, thus, this lectin would probably bind to glycoproteins secreted by the vas deferens. The chemical treatments used suggest that this secretion contains fucose residues located in both N- and O-linked oligosaccharides. The other lectins may label secreted proteins, but also structural proteins or proteins reabsorbed from the luminal fluid. The lectin- binding pattern of mitochondria-rich cells in the vas deferens differed from that found in the epididymis.  相似文献   

5.
Summary In order to determine the effect of routine fixation on the lectin affinity of tissue structures, we used unconjugated lectins and an indirect immunoalkaline-phosphatase method for frozen sections, and the peroxidase-anti-peroxidase method for paraffin-embedded, formalinfixed tissue sections. Fourteen hyperplastic human tonsils were used, and the results of the binding spectra of each lectin were compared. In general, the binding spectrum defected in the paraffin sections was part of the broader range of affinity obtained in the frozen sections. The lectin receptors on the cell surface were especially affected by formalin fixation. On the other hand, the paraffin sections, because of their superior morphology, showed a better localization of the cytoplasmic reaction product and discriminated the cell types more accurately. Thus, the two tissue preparations are rather complementary. In the tonsil peanut agglutinin (PNA) and periodic acid/Concanavalin A (PA/Con A) proved to be suitable tools for distinguishing exactly between the crypt and the surface epithelium. Ulex europaeus agglutinin I (UEA) is a reliable endothelial marker with a strong affinity to the crypt epithelium. In the frozen sections, PNA regularly stained follicular-centre cells on their cell surface. PNA, Helix pomatia agglutinin (HPA), soybean agglutinin (SBA) and Con A stained the histiocytic population, especially PNA which additionally stained an asteroid histiocyte. This cell probably corresponds to the antigen-presenting histiocyte of the T-system.Abbreviations PNA Peanut agglutinin - UEA Ulex europaeus agglutinin I - HPA Helix pomatia agglutinin - SBA Soybean agglutinin - Con A Concanavalin A - PHA Phaseolus vulgaris agglutinin - SaR swine-anti-rabbit immunoglobulins - PaP peroxidase-anti-peroxidase-complexes - HRP horseradish peroxidase - PA periodic acid - DAB diaminobenzidine - AP alkaline phosphatase - PBS phosphate buffered saline solution - pls paraffin section - fzs frozen section - s surface - c cytoplasmic  相似文献   

6.
Summary Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheat-germ agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(1–3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosac-charide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule.  相似文献   

7.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

8.
The expression of sialoglycoconjugates in Fonsecaea pedrosoi conidia, mycelia, and sclerotic cells was analyzed using influenza A and C virus strains, sialidase treatment, and lectin binding. Conidium and mycelium whole cells were recognized by Limax flavus (LFA), Maackia amurensis (MAA), and Sambucus nigra (SNA) lectins, denoting the presence of surface sialoglycoconjugates containing 2,3- and 2,6-sialylgalactosyl sequences. Sialidase-treated conidia reacted more intensively with peanut agglutinin (PNA), confirming the occurrence of sialyl-galactosyl linkages. Conidial cells agglutinated in the presence of influenza A and C virus strains, which confirmed the results obtained from lectin-binding experiments and revealed the presence of sialoglycoconjugates bearing 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) surface structures. Western blotting analysis with peroxidase-labeled LFA demonstrated the occurrence of sialylglycoproteins in protein extracts from conidia and mycelia, with molecular masses corresponding to 56 and 40 kDa. An additional band of 77 kDa was detected in conidial extracts, suggesting an association between sialic acid expression and morphogenesis. Synthesis of sialic acids was correlated with sialidase expression, since both conidial and mycelial morphological stages presented secreted and cell-associated enzyme activity. Sialoglycoconjugates were not detected in F. pedrosoi sclerotic cells from in vitro and in vivo sources, which also do not express sialidase activity. The surface sialyl residues in F. pedrosoi are apparently involved in the fungal interaction with immune effector cells, since sialidase-treated conidia were less resistant to phagocytosis by human neutrophils from healthy individuals. These findings suggest that sialic acid expression in F. pedrosoi varies according to the morphological transition and may protect infecting propagules against immune destruction by host cells.  相似文献   

9.
Summary Kidney and liver samples from two cases of Fabry's disease and spleen and liver samples from Gaucher and Niemann—Pick diseases were tested for binding to lectins such as peanut agglutinin (PNA),Bandeiraea simplicifolia, (BSA),canavalia ensiformis (Con A), soybean agglutinin (SBA) and wheat germ agglutinin (WGA) labelled with horseradish peroxidase using histochemical techniques. These techniques allowed the localization of compounds with -galactosyl residues in tissues from Fabry's disease. In tissues from the Gaucher and Niemann—Pick cases, the storage material was found to be more complex than expected, and some problems regarding the significance of lectin binding are discussed.  相似文献   

10.
Summary Renal biopsy specimens showing histological alterations typical of advanced diabetic glomerulopathy were studied for changes in glomerular glycoconjugates, using fluorochrome-coupled lectins as probes. All samples studied showed a marked reduction in the binding ofTriticum vulgaris (WGA) lectin in the glomerular basement membranes. On the other hand, new glomerular binding sites for the lectins ofDolichos biflorus (DBA),Helix pomatia (HPA) andArachis hypogaea (PNA), recognizing galactosyl moieties of glycoconjugates and giving no reaction in normal glomeruli, were seen in all samples studied. In addition,Wistaria floribunda lectin (WFA), recognizing galactosyl and.N-acetylgalactosaminyl configurations in glycoconjugates, gave a typical linear binding along the glomerular basement membranes, differing markedly from its reaction with normal kidney.Ulex europaeus (UEA I) showed reduced binding in the glomeruli of diabetic nephropathy.The results show that changes in glomerular glycoconjugates may appear in diabetic nephropathy, suggesting a disturbance in the turnover of the non-reducing terminal saccharide residues. In addition, the results show that lectins are useful probes for studying these changes further.  相似文献   

11.
Summary Five Fluorescein-isothiocyanate (FITC)-labelled lectins were used to study the postnatal development of carbohydrate constituents in the rat ventral prostate: Concanavalin A (Con A), wheat germ agglutinin (WGA), peanut agglutinin (PNA),Dolichos biflorus agglutinin (DBA) andRicinus communis agglutinin I (RCA-I) With all the lectins, tested, except RCA-I, specific binding sites could be shown for every stage of differentiation in the glandular epithelium. Binding sites for Con A, WGA, PNA and DBA were found from day 10 to 13 post partum onwards. Each lectin showed a characteristic localization. Binding sites for the lectins used changed to different extents during the following two weeks. After the 24th day post partum no further changes in the lectin binding pattern could be found. The development of the lectin binding properties showed that the changes in carbohydrate-containing constituents of the prostate correlate with the beginning of prostatic secretion and to prostatic epithelial differentiation. In the periacinar stroma the development of the lectin binding pattern was similar to that in the glandular epithelium. The changes of stromal binding sites for Con A and WGA during epithelial differentiation may reflect the changes of epithelial-stromal interactions in the prostate.  相似文献   

12.
Summary Molecular recognition can be mediated by protein (lectin)-carbohydrate interaction, explaining the interest in this topic. Plant lectins and, more recently, chemically glycosylated neoglycoproteins principally allow to map the occurrence of components of this putative recognition system. Labelled endogenous lectins and the lectin-binding ligands can add to the panel of glycohistochemical tools. They may be helpful to derive physicologically valid conclusions in this field for mammalian tissues. Consequently, experiments were prompted to employ the abundant -galactoside-specific lectin of human nerves in affinity chromatography and in histochemistry to purify and to localize its specific glycoprotein ligands. In comparison to the -galactoside-specific plant lectins fromRicinus communis andErythrina cristagalli, notable similarities were especially detectable in the respective profiles of the mammalian and the Erythrina lectin. They appear to account for rather indistinguishable staining patterns in fixed tissue sections. Inhibitory controls within affinity chromatography, within solid-phase assays for each fraction of lectin-binding glycoproteins and within histochemistry as well as the demonstration of crossreactivity of the three fractions of lectin-binding glycoproteins with the biotinylated Erythrina lectin in blotting ascertained the specificity of the lectin-glycoprotein interaction. In addition to monitoring the accessible cellular ligand part by the endogenous lectin as probe, the comparison of immunohistochemical and glycohistochemical detection of the lectin in serial sections proved these methods for receptor analysis to be rather equally effective. The observation that the biotinylated lectin-binding glycoproteins are also appropriate ligands in glycohistochemical analysis warrants emphasis. Overall, the introduction of biotinylated mammalian lectins as well as the lectin-binding glycoproteins will aid to critically evaluate the physiological significance of the glycobiological interplay between endogenous lectins and distinct carbohydrate parts of cellular glycoconjugates.  相似文献   

13.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

14.
Summary Lectins ofBauhinia purpurea (BPA),Canavalin ensiformis (Con A),Griffonia simplicifolia I (GS I),Griffonia simplicifolia II (GS II),Maclura pomifera (MPA),Arachis hypogaea (PNA),Glycine max (SBA),Ulex europaeus I (UEA I) andTriticum vulgaris (WGA) were used to evaluate cell surface carbohydrates in formalin-fixed paraffin-embedded tissue sections of normal human cervix uteri. Consistent patterns of staining of the squamous epithelium were obtained in all 30 cases with BPA, GS II, MPA, PNA, SBA and WGA. A variable distribution of lectin binding was seen in squamous epithelium with Con A, GS I and UEA I. The patterns of GS I and GS II binding reflected squamous epithelial maturation. Columnar epithelium did not stain with GS II, stained variably with Con A, and stained consistently with the remaining seven lectins in all cases. No association between lectin binding and blood group or phase of the menstrual cycle was found. These findings may be used as a baseline for evaluation of lectin binding in both preinvasive and invasive lesions of the cervix uteri.  相似文献   

15.
Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  相似文献   

16.
Summary Cryostat sections from rat gracilis muscles were incubated with different biotinylated lectins: Con A (Concanavilin A), WGA (Wheat germ agglutinin), SBA (soybean agglutinin), GS I and GS II (Griffonia simplicifolia agglutinin), LCA (Lens culinaris agglutinin), PNA (peanut agglutinin) and PSA (Pisum sativum agglutinin). The sections were subsequently treated with alkaline phosphatase conjugated avidin. The lectin binding sites were visualized after incubation in substrate media containing: (1) 5-bromo-4-chloro indoxyl phosphate and Nitro Blue tetrazolium or copper sulphate; (2) naphthol AS-MX phosphate or naphthol AS-BI phosphate and various types of diazonium salts; (3) -naphthylphosphate and Fast Blue BB; (4) -glycerophosphate according to the method of Gomori. The results obtained with the alkaline phosphatase methods were compared with those seen with a streptavidin-horseradish peroxidase procedure. Several chromogen protocols for visualizing alkaline phosphatase activity showed differences in the ability to detect lectin binding sites. A sarcoplasmic reaction was evident for Con A, GS II, WGA, LCA, and PSA after incubation in the indoxyl phosphate medium. Sarcoplasmic reaction for GS II was also noticed after incubation with naphthol AS-MX Fast Blue BB and -glycerophosphate. The latter substrate also gave rise to a sarcoplasmic Con A reaction. With the indoxylphosphate tetrazolium salt method some muscle fibres showed a very strong intracellular reaction after incubation with Con A and GS II while the staining intensity was weak in other fibres. The same muscle fibres were stained with PAS. No sarcoplasmic reactions were observed with either naphthol phosphate media or with the diaminobenzidine peroxidase methods. Further, the staining of the muscle fibre periphery, connective tissue, and capillaries was intensified using the indoxyl method. The indoxylphosphate-tetrazolium salt method seems to be suitable for future investigations of lectin binding sites in muscle sections.  相似文献   

17.
Summary Arabinogalactan-protein (AGP, -lectin) was isolated from leek seeds, tested for specificity, conjugated with gold colloids, and used as a cytochemical probe to detect -linked bound sugars in ultrathin sections of wheat leaves infected with a compatible race of stem rust fungus. Similar sections were probed with other gold-labeled lectins to detect specific sugars. AGP-gold detected -glycosyl in all fungal walls and in the extrahaustorial matrix. Other lectin gold conjugates localized galactose in all fungal walls except in walls of the haustorial body. Limulus polyphemus lectin bound only to the outermost layer of intercellular hyphal walls of the fungus. Binding of these lectins was inhibited by their appropriate haptens and was diminished or abolished in specimens pretreated with protease, indicating that the target substances in the tissue were proteinaceous or that polysaccharides possessing affinity to the lectin probes had been removed by the enzyme from a proteinaceous matrix by passive escape. Bindig of Lotus tetragonolobus lectin was limited to the two outermost fungal wall layers but was not hapten-inhibitable. Limax flavus lectin, specific for sialic acids, had no affinity to any structure in the sections. In the fungus, the most complex structure was the outermost wall layer of intercellular hyphal cells; it had affinity to all lectins tried so far, except to Limax flavus lectin and to wheat germ lectin included in an earlier study. In the host, AGP and the galactose-specific lectins bound to the inner domain of the wall in areas not in contact with the fungus. At host cell penetration sites, affinity to these lectins often extended througout the host wall, confirming that it is modified at these sites. Pre-treatment with protease had no effect on lectin binding to the host wall. After protease treatment, host starch granules retained affinity to galactose-specific lectins, but lost affinity for AGP.This paper is listed as Contribution No. 1330, Agriculture Canada Research Station Winnipeg  相似文献   

18.
Summary Lectins of Helix pomatia (HPA), Glycine max (SBA), Vicia villosa (VVA), Dolichos biflorus (DBA), Ulex europaeus (UEA-1), Tetragonolobus purpureus (LTA), Griffonia simplicifolia (BSA-1B4), Maclura pomifera (MPA), Sambucus nigra (SNA) and Maackia amurensis (MAA) were used to explore the distribution of saccharides characteristic of non-reducing termini of O- and N-linked glycoprotein glycans in the seminiferous tubules of rat testis. Sialyl residues (both 2,3- and 2,6-linked, as shown by MAA and SNA respectively) and -l-fucosyl residues (shown by UEA-1 and LTA) were expressed on spermatogonia, spermatocytes and spermatozoa, but not on spermatids. In contrast, 2-deoxy-2-acetamido--d-galactosyl termini were abundant on spermatozoa, but not on any of their precursors (as shown by HPA, SBA and VVA). All occurred on both O- and N-linked glycans.Sertoli cells expressed small amounts of fucose and 2,3-linked sialic acid, and abundant 2,6 sialyl residues, largely on N-glycans. -Galactosyl residues were readily detected on the tubular basement membrane, but not elsewhere.  相似文献   

19.
Lectin analysis of human immunoglobulin G N-glycan sialylation   总被引:2,自引:0,他引:2  
The lectins Sambucus nigraagglutinin (SNA) and Ricinus communisagglutinin (RCA), specific for 2,6 linked sialylation, and terminal galactose respectively were used to study the occurrence, linkage and distribution of human immunoglobulin G (IgG) sialylation. SNA was shown to bind N-glycan 2,6-linked sialic acid only. Sialidase analysis confirmed that this is the dominant, if not exclusive linkage. Total IgG sialylation was estimated at 1.0[emsp4 ]g SA/mg IgG (or about 0.5 mole per mole) using a biochemical sialic acid assay. SNA displayed strong binding to the IgG Fab fragment in both its native and denatured state. In contrast, SNA failed to bind the IgG Fc fragment in its native form, but displayed strong binding after the Fc was denatured. This allowed the construction of quantitative assays capable of measuring both IgG Fab and Fc 2,6-sialylation without the need for enzymatic peptide digestion.  相似文献   

20.
There is increasing evidence for changes in fucosylation in cancer. Previously, we showed that the fucose-specific lectin,Lotus tetragonolobus, extracts an abnormal form of haptoglobin (Hp) from cancer sera. This study investigates the monosaccharide content of Hp obtained from women with ovarian and breast cancer at different stages of their disease. In both cancers, Hp fucose was low when the disease was benign or in remission and much higher when the disease was progressive. This occurred whether the data was expressed per mole of protein or per three mannose residues. Changes in other monosaccharides were minor compared with fucose. There were small increases in theN-acetylglucosamine and galactose content (per three mannoses) in ovarian cancer, suggesting that some glycan chains have increased branching. The latter was independent of disease activity which may be due to some indirect cause such as cytotoxic therapy or an inflammatory response. When ovarian cancer patients were in remission, the number of glycosylation sites on Hp was reduced. Hp isolated from patients with early, but not advanced breast cancer also appeared to have increased glycan branching. The increased fucosylated Hp may interfere with fucose-mediated adhesion reactions of cancer cells.Part of this work was published in abstract form,Glycoconjugate J 1993;10; 318.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号