首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The photolysis of 9,10-anthraquinone (AQ), 2-methyl- and 2,3-dimethyl-AQ was studied in air-saturated acetonitrile-water in the presence of various donors: formate, ascorbic acid, alcohols, e.g. 2-propanol or methanol, and amines, e.g. ethylenediaminetetraacetate (EDTA). The photoreaction is initiated by H-atom or electron transfer from the donor to the AQ triplet state. The conversion of oxygen into hydrogen peroxide occurs via the superoxide radical and its conjugate acid. The quantum yield of oxygen uptake (Phi(-O2)) increases with increasing donor concentration. Phi(-O2) = 0.3-0.6 in the presence of 1 M 2-propanol and 3-10 mM ascorbic acid or EDTA. The properties of the quinone and donor radicals involved and the pH and concentration dependences of Phi(-O2) are described.  相似文献   

2.
To clarify the roles of superoxide anion (O2.-) and methylene blue in the reductive activation of the heme protein indoleamine 2,3-dioxygenase, effects of xanthine oxidase-hypoxanthine used at various oxidase concentration levels as an O2.- source and an electron donor on the catalytic activity of the dioxygenase have been examined in the presence and absence of either methylene blue or superoxide dismutase using L- and D-tryptophan as substrates. In the absence of methylene blue, initial rates of the product N-formylkynurenine formation are enhanced in parallel with the xanthine oxidase level up to approximately 100 and approximately 50% of the apparent maximal activity (approximately 2 s-1) for L- and D-Trp, respectively. Superoxide dismutase effectively inhibits the reactions by 80-98% for both isomers. Additions of methylene blue (25 microM) help to maintain the linearity of the product formation that would be rapidly lost a few minutes after the start of the reaction without the dye, especially for L-Trp. Additions of methylene blue also enhance the activity to the maximal level for D-Trp. In the presence of methylene blue, the inhibitory effects of superoxide dismutase are considerably decreased with the increase in xanthine oxidase concentration, and at near maximal dioxygenase activity levels superoxide dismutase is totally without effect. In separate anaerobic experiments leuco-methylene blue, generated either by photoreduction or by ascorbate reduction, is shown to be able to reduce the ferric dioxygenase up to 25-40%. Substrate Trp and heme ligands (CO, n-butyl isocyanide) help to shift a ferric form----ferrous form equilibrium to the right. Thus, under aerobic conditions leuco-methylene blue might similarly be able to reduce the dioxygenase in the presence of an electron donor with the aid of substrate and O2. These results strongly suggest that indoleamine 2,3-dioxygenase can be activated through different pathways either by O2.- or by an electron donor-methylene blue system. For the latter case, the dye is acting as an electron mediator from the donor to the ferric dioxygenase.  相似文献   

3.
1. Eosin, erythrosin, rose bengale, cyanosin, acridine, and methylene blue act photodynamically on the luminescence of a Cypridina luciferin-luciferase solution. In presence of these dyes inhibition of luminescence, which without the dye occurs only in blue-violet light, takes place in green, yellow, orange, or red light, depending on the position of the absorption bands of the dye. 2. Inhibition of Cypridina luminescence without photosensitive dye in blue-violet light, or with photosensitive dye in longer wave-lengths, does not occur in absence of oxygen. Light acts by accelerating the oxidation of luciferin without luminescence. Eosin or methylene blue act by making longer wave-lengths effective, but there is no evidence that these dyes become reduced in the process. 3. The luciferin-oxyluciferin system is similar to the methylene white-methylene blue system in many ways but not exactly similar in respect to photochemical change. Oxidation of the dye is favored in acid solution, reduction in alkaline solution. However, oxidation of luciferin is favored in all pH ranges from 4 to 10 but is much more rapid in alkaline solution, either in light or darkness. There is no evidence that reduction of oxyluciferin is favored in alkaline solution. Clark''s observation that oxidation (blueing) of methylene white occurs in complete absence of oxygen has been confirmed for acid solutions. I observed no blueing in light in alkaline solution.  相似文献   

4.
Effective in situ staining of crustacean nerves was achieved with leuco methylene blue reduced with either ascorbic acid or sodium hydrosulfite (Na2S2O4). A stock solution of methylene blue, 0.4% (ca. 0.001 M), and the reductants, ascorbic acid or sodium hydrosulfite (0.01 M), were prepared in van Harreveld's crayfish physiological solution. Methylene blue stock solution was mixed with either of the reductants in the approximate ratio of 1:10, v/v, and titrated to the end point. Ascorbic acid reduction is light catalyzed and requires intense illumination during titration. The cleared or leucomethylene blue stock solution is suitable for immediate use as a working nerve stain. With either reductant, the working solution oxidizes on standing in air, but can be titrated repeatedly without loss of staining properties. Dissected nerve trunks or tissue were immersed in the working stain for 20 min at room temperature and the staining process observed until suitable contrast developed. Excess dye was decanted and the tissues flooded with crayfish physiological solution. Contrast could sometimes be enhanced by flooding the stained area with 1% hydrogen peroxide in van Harreveld's solution. When permanent mounts were prepared, tissues were dehydrated with tertiary butyl alcohol in preference to ethyl alcohol series. For anatomical and neurophysiological studies of nerve distribution in crustaceans, the alternative use of either ascorbic acid or sodium hydrosulfite, as reductants for methylene blue, was preferable to the more complicated rongalit-technique and characterization of neural elements was fully as satisfactory.  相似文献   

5.
A capillary electrophoresis method for the determination of the dye methylene blue (tetramethylthionine, MB) in human urine depending on liquid/liquid-extraction and diode array detection has been developed, validated, and applied to samples of healthy individuals, who had been dosed with methylene blue within clinical studies. After extraction with dichloromethane and sodium hexanesulfonate, sample extracts were measured on an extended light path capillary. The dye was detected simultaneously at 292 and 592 nm using methylene violet 3 RAX as internal standard. The limit of quantification was 1.0 microg/ml. The accuracy of the method varied between -15.2 and +0.8% and the precision ranged from 2.0 to 12.0%. The method was linear at least within 1.0 and 60 microg/ml. In contrast to earlier indirect determinations no leuco methylene blue (LMB) was directly detected in urine, whereas in aqueous test solutions containing surplus amounts of ascorbic acid leuco methylene blue was well separated from MB in a single run.  相似文献   

6.
Effective in situ staining of crustacean nerves was achieved with leuco methylene blue reduced with either ascorbic acid or sodium hydrosulfite (Na2S2O4). A stock solution of methylene blue, 0.4% (ca. 0.001 M), and the reductants, ascorbic acid or sodium hydrosulfite (0.01 M), were prepared in van Harreveld's crayfish physiological solution. Methylene blue stock solution was mixed with either of the reductants in the approximate ratio of 1:10, v/v, and titrated to the end point. Ascorbic acid reduction is light catalyzed and requires intense illumination during titration. The cleared or leucomethylene blue stock solution is suitable for immediate use as a working nerve stain. With either reductant, the working solution oxidizes on standing in air, but can be titrated repeatedly without loss of staining properties. Dissected nerve trunks or tissue were immersed in the working stain for 20 min at room temperature and the staining process observed until suitable contrast developed. Excess dye was decanted and the tissues flooded with crayfish physiological solution. Contrast could sometimes be enhanced by flooding the stained area with 1% hydrogen peroxide in van Harreveld's solution. When permanent mounts were prepared, tissues were dehydrated with tertiary butyl alcohol in preference to ethyl alcohol series. For anatomical and neurophysiological studies of nerve distribution in crustaceans, the alternative use of either ascorbic acid or sodium hydrosulfite, as reductants for methylene blue, was preferable to the more complicated rongalit-technique and characterization of neural elements was fully as satisfactory.  相似文献   

7.
Electron microscopic data on methylene blue staining of dendritic cells in the epithelia of the soft palate and skin of the moose after supravital dye injection are presented. The ultrastructural details were compared with corresponding light microscopic findings. Methylene blue stained tissue was fixed by immersion in a paraformaldehyde-glutaraldehyde solution containing phosphomolybdic acid. The ensuing dye precipitate was stabilized by ammonium heptamolybdate. The light microscopic investigation revealed that selective staining of dendritic cells depended on the presence of ambient oxygen. In addition, delicate morphological characteristics, like spinous structures of the dendrites, were visible. Some cells also showed terminal enlargements of the dendrites close to the surface of the epithelium. In general, visualization of morphological detail was superior to that obtained by conventional histological and immunohistochemlcal procedures. Nerve fibers were also stained within the epithelium as well as the subepithelial connective tissue. At the electron microscopic level, the dye was clearly identified as an electron dense precipitate that accumulated primarily within the cytoplasm near the plasma membrane. Furthermore, it was bound to the chromatin of the nuclei. No significant staining of mitochondria or other organelles was seen, within the cytoplasm, the oxygen-dependent binding sites may be associated with heme proteins that attract both the dye in its reduced lipophilic leuco form and oxygen, followed by generation of oxygen radicals and a reoxldation of the leuco form to the cationic blue dye. Because of its selectivity for intraepithelial dendritic cells, the method described here supplements immunocytochemical procedures at both the light and electron microscopic levels.  相似文献   

8.
Electron microscopic data on methylene blue staining of dendritic cells in the epithelia of the soft palate and skin of the moose after supravital dye injection are presented. The ultrastructural details were compared with corresponding light microscopic findings. Methylene blue stained tissue was fixed by immersion in a paraformaldehyde-glutaraldehyde solution containing phosphomolybdic acid. The ensuing dye precipitate was stabilized by ammonium heptamolybdate. The light microscopic investigation revealed that selective staining of dendritic cells depended on the presence of ambient oxygen. In addition, delicate morphological characteristics, like spinous structures of the dendrites, were visible. Some cells also showed terminal enlargements of the dendrites close to the surface of the epithelium. In general, visualization of morphological detail was superior to that obtained by conventional histological and immunohistochemlcal procedures. Nerve fibers were also stained within the epithelium as well as the subepithelial connective tissue. At the electron microscopic level, the dye was clearly identified as an electron dense precipitate that accumulated primarily within the cytoplasm near the plasma membrane. Furthermore, it was bound to the chromatin of the nuclei. No significant staining of mitochondria or other organelles was seen, within the cytoplasm, the oxygen-dependent binding sites may be associated with heme proteins that attract both the dye in its reduced lipophilic leuco form and oxygen, followed by generation of oxygen radicals and a reoxldation of the leuco form to the cationic blue dye. Because of its selectivity for intraepithelial dendritic cells, the method described here supplements immunocytochemical procedures at both the light and electron microscopic levels.  相似文献   

9.
Detailed schemes are described for the preparation of purified methylene blue and azure B from commercial samples of methylene blue. Purified methylene blue is obtained by extracting a solution of the commercial product in an aqueous buffer (pH 9.5) with carbon tetrachloride. Methylene blue remains in the aqueous layer but contaminating dyes pass into the carbon tetrachloride. Metal salt contaminants are removed when the dye is crystallized by the addition of hydrochloric acid at a final concentration of 0.25 N. Purified azure B is obtained by extracting a solution of commercial methylene blue in dilute aqueous sodium hydroxide (pH 11-11.5) with carbon tetrachloride. In this pH range, methylene blue is unstable and yields azure B. The latter passes into the carbon tetrachloride layer as it is formed. Metal salt contaminants remain in the aqueous layer. A concentrated solution oa azure B is obtained by extracting the carbon tetrachloride layer with 4.5 X 10(-4)N hydrobromic acid. The dye is then crystallized by increasing the hydrobromic acid concentration to 0.23 N. Thin-layer chromatography of the purified dyes shows that contamination with related thiazine dyes is absent or negligible. Ash analyses reveal that metal salt contamination is also negligible (sulphated ash less than 0.2%).  相似文献   

10.
1. Cysteamine is oxidized to hypotaurine by an enzyme extracted from horse kidney, with sulphur or sulphide acting as a cofactor. It has been now found that, when the enzyme is omitted, sulphur and sulphide are able to catalyse the oxidation of cysteamine to cystamine by molecular oxygen. 2. Methylene blue may be used in catalytic amounts as a cofactor in the enzymic oxidation of cysteamine to hypotaurine in the place of sulphur or sulphide. The effect of methylene blue is not light-dependent and is not abolished by catalase. Other redox dyes with E'(0) higher than that of methylene blue are also used as cofactors. 3. A property common to all the cofactors is that they are necessary for the enzymic process in catalytic amounts, though they depress the final amount of hypotaurine produced when added over a critical concentration. All the cofactors share also the property of being catalysts for the non-enzymic oxidation of cysteamine to cystamine. 4. Methylene blue is reduced by cysteamine under anaerobic conditions, and is reoxidized in the presence of air. The rate of the reduction is not accelerated by the enzyme, indicating that the dye does not act in this reaction as a hydrogen carrier from the enzyme to oxygen. The possible mechanism of action of methylene blue and of the other cofactors is discussed.  相似文献   

11.
Summary Photoreduction of methylene blue in the presence of various organic and biomolecules has been studied spectrophotometrically and potentiometrically. During the photoreduction, the emf of the system measured against calomel electrode increases and attains a plateau long before the complete reduction of the dye. This indicates that the emf developed in this system is not that of the dye/leucodye in which case the plateau of the emf value would be expected at the complete reduction of the dye. The emf has been interpreted to be mainly that of dye/dye free radical, although dye/leucodye and dye free radical/leucodye may contribute to the emf value of the system. The free radical may be formed in the system immediately after exposure to light or even in the dark at high pH. Photoreduction of methylene blue in the presence of EDTA is completely inhibited by excess magnesium ions. By using various compounds to act as electron donors in the photoreduction, it has been found that compounds having the general formula R1R2·N·CH2COOH can cause the reduction of methylene blue where R1 and R2 may be–CH2COOH or alkyl or aryl substitution. Photoreduction becomes faster with more than one–CH2COOH group in the compounds. Glycine or N-methyl glycine fails to act as a catalyst, N-phenyl glycine or N:N-diethyl glycine catalyses the photoreduction. N-phenyl- or N-ethyl amino diacetic acid causes faster photoreduction of methylene blue. Analgin causes photoreduction even in dark. The dye capri blue is not photoreduced by EDTA though there is an increase in the emf of the system on its exposure to light; but the presence of methylene blue in the system catalyses its photoreduction.Presented at the VIth International Congress of Photobiology, held at Bochum in August 1972.  相似文献   

12.
In order to find a more satisfactory interpretation of the phenomenon of photosensitized inactivation of bacteria, studies were performed under various experimental conditions on methylene blue and E. coli. In summary the findings are as follow:— 1. The dye is absorbed by the bacteria according to the Langmuir isotherm and can be removed by ionic substitutions; the dye binding to the bacteria is predominantly ionic; the dye-bacteria complex produces a new absorption peak in the 610 mµ wave length region, and the action spectrum corresponds to the spectral absorption of the dye-bacteria complex. 2. There is an optimum dye concentration range for the photosensitized inactivation. 3. Photosensitized inactivation of bacteria can take place both in the frozen and liquid states and the presence of oxygen is essential to the inactivation process. 4. Hydrogen peroxide, formed by reoxidation of the reduced methylene blue, does not inactivate bacteria. 5. Following the photosensitized inactivation, E. coli lose their ability to reduce the methylene blue in the presence of various hydrogen donors, suggesting that enzymes are involved in the inactivation process. 6. Bacteria inactivated by photosensitization can be reactivated by prolonged storage after irradiation; the recovery rate increases with increasing temperature (maximum 37°), and is also influenced by the presence of various hydrogen donors. In view of collected experimental data, the basic reaction mechanisms are analyzed in photosensitized inactivation. The first step of the reaction seems to be excitation of the dye-bacteria, or dye-bacteria oxygen complex, by a photon which produces an activated complex. In such a state, molecular oxygen is capable of producing an oxidizing reaction, which results in the inactivation of the bacteria. Some aspects of the detailed reactions taking place at the cell surface are discussed.  相似文献   

13.
Thionine and toluidine blue were used as sentizers on photooxidation processes of methionine, tryosine and tryptophane. They were more effective than methylene blue. Methionine was photooxidized to sulfoxide and tryptophane to kinurenine. A tyrosine-sensitizer addition compound was postulated. Dye concentration, pH, temperature and EDTA presence conditions were determined on each one of the modification reactions. Methionine at acid pH was selectively modified. On the basis of obtained results and published references, a direct interaction of singlet oxygen with methionine and tryptophase and the excited dye with tyrosine was respectively discussed.  相似文献   

14.
Methylene blue stimulates the oxidation of glutathione in red blood cells in vitro and in vivo. This oxidation has been attributed to hydrogen peroxide that is generated from the autooxidation of leucomethylene blue arising from the reduction of methylene blue by NADPH. In this report we present evidence that methylene blue directly oxidizes glutathione and that oxidation of glutathione by hydrogen peroxide is a secondary reaction. Moreover, superoxide dismutase has no effect on the oxidation. Under aerobic conditions, methylene blue oxidizes glutathione 30 times faster than the spontaneous autooxidation of glutathione. Under anaerobic conditions the stoichiometry of the reaction of methylene blue with glutathione supports a direct chemical reaction. The reaction rates between glutathione and methylene blue suggest a second order reaction over the conditions tested. That neither oxygen radical formation nor significant amounts of hydrogen peroxide are produced by methylene blue, even in the presence of added glucose, is further confirmed by the failure to detect significant amounts of lipid peroxidation products, or hemolysis, in red blood cells incubated with the dye.  相似文献   

15.
The effects of oxygen on ascorbic acid concentration and transport were studied in chick embryo (Gallus gallus domesticus). During normoxic incubations, plasma ascorbic acid concentration peaked on fetal day 12 and then fell, before increasing again on day 20 when pulmonary respiration began. In contrast, cerebral ascorbic acid concentration rose after day 6, was maintained at a relatively high level during days 8–18, and then fell significantly by day 20. Exposure of day 16 embryos for 48 h to 42% ambient O2 concentration decreased ascorbic acid concentration by four-fifths in plasma and by one-half in brain, compared to values in normoxic (21% O2) or hypoxic (15% O2) controls. Hyperoxic preincubation of embryos also inhibited ascorbic acid transport, as evidenced by decreased initial rates of saturable and Na+-dependent [14C]ascorbic acid uptake into isolated brain cells. It may be concluded that changes in ascorbic acid concentration occur in response to oxidative stress, consistent with a role for the vitamin in the detoxification of oxygen radicals in fetal tissues. However, changing O2 levels have less effect on ascorbic acid concentration in brain than in plasma, indicating regulation of the vitamin by brain cells. Furthermore, the effect of hyperoxia on cerebral vitamin C may result, in part, from inhibition of cellular ascorbic acid transport.  相似文献   

16.
Methylene blue (MB) plus light, in the presence of oxygen, mediates formation of 8-hydroxyguanine in DNA. The yield of 8-hydroxyguanine may be as much as from 2 to 4% of the guanines present. The results presented here show that treatment of supercoiled plasmid DNA with methylene blue plus light causes single-stranded nicks. However, single-stranded nicking occurs approximately 17-fold less frequently than does formation of 8-hydroxyguanine. The nicking rate is reduced in the presence of Mg ion but is not prevented by inhibitors of the iron-catalyzed Fenton reaction or by scavengers of hydroxyl free radicals. Extensive exposure of DNA to light in the presence of MB produces no detectable thiobarbital reactive material thus implicating that single strand nicking does not occur by hydroxyl free radical attack on deoxyribose. Formation of 8-hydroxyguanine is apparently not dependent upon intercalative binding of MB to DNA, since it is formed in polydeoxyguanylic acid.  相似文献   

17.
When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene blue dissolved in sea water is also found to be azure B, when the pH value of the sea water is at 9.5, but it consists of azure B and to a less extent of methylene blue when the pH value is at 5.5. 5. Methylene blue employed for these experiments, when dissolved in sea water, in sap of Valonia, or in artificial sap, gives absorption maxima characteristic of methylene blue. Azure B found in the sap collected from the vacuole cannot be due to the transformation of methylene blue into this dye after methylene blue has penetrated into the vacuole from the external solution because no such transformation detectable by this method is found to take place within 3 hours after dissolving methylene blue in the sap of Valonia. These experiments indicate that the penetration of dye into the vacuole from methylene blue solution represents a diffusion of azure B in the form of free base. This result agrees with the theory that a basic dye penetrates the vacuole of living cells chiefly in the form of free base and only very slightly in the form of salt. But as soon as the cells are injured the methylene blue (in form of salt) enters the vacuole. It is suggested that these experiments do not show that methylene blue does not enter the protoplasm, but they point out the danger of basing any theoretical conclusion as to permeability on oxidation-reduction potential of living cells from experiments made or the penetration of dye from methylene blue solution into the vacuole, without determining the nature of the dye inside and outside the cell.  相似文献   

18.
E. coli ribosomes are readily photoinactivated by methylene blue in the presence of air. A variety of singlet oxygen quenchers like NaN3, 2,5-dimethylfuran, hydroquinone and ascorbic acid provide about 60% protection against this photoinactivation indicating that a major mechanism of ribosome inactivation proceeds through the formation of singlet oxygen, with small contributions (<40%) from other mechanisms. The singlet oxygen quenchers, 1,4-diazabicyclo [2.2.2] octane and triethylamine give unexpected results, in that they show no protection against photoinactivation.  相似文献   

19.
Summary Interactions of the cationic dye methylene blue with mercuric chloride have been studied conductometrically, analytically and spectrophotometrically. Methylene blue produces red colored precipitate with mercuric chloride; in presence of large excess of mercuric chloride a strong metachromasia is induced in the dye. Metachromasia induced by mercuric chloride is more hypsochromic as well as hypochromic than that induced by chromotopes like heparin. The complexes formed between methylene blue and mercuric chloride have variable compositions, the complex responsible for the red metachromatic color of the dye has the composition 2 dye: 1 HgCl2. A model has been proposed for the metachromatic complex consisting hexa-coordinated mercury, dye is coordinated to the mercury by donating the lone pair electrons of terminal nitrogen. The non-metachromatic dye capri blue also interacts with mercuric chloride but without any change in the visible spectrum. Potassium iodide also gives metachromatic reddish blue colored precipitate with methylene blue.University Research Scholar.  相似文献   

20.
We conducted this study to evaluate the oxidation of glucose induced by visible light in the presence of sensitizers such as methylene blue and flavins (i.e., flavin mononucleotide and riboflavin). The concentration of the sensitizers was similar to that of flavin in parenteral nutrients. The photooxidation of glucose sensitized by flavin mononucleotide or riboflavin was greater than that which was observed in the presence of methylene blue, whereas the isotopic effect of deuterium oxide (D(2)O) was enhanced more substantially in the presence of methylene blue than in the presence of flavins. These results show that methylene blue exerts its action through singlet oxygen and that at a high substrate concentration (as was used in this work) flavin mononucleotide and riboflavin act preferentially as type I sensitizers. In the flavin photosensitized processes, the presence of hydrogen peroxide, superoxide anion, and hydroxyl radical was demonstrated. The photooxidation of glucose is favored by an increase in pH, and it also depends on the energy absorbed by the system. By using a specific reagent for glucose (i.e., o-toluidine), it was possible to quantify the photoconversion of glucose. The results obtained in this work should be considered in the management of glucose-containing parenteral nutrients that are exposed to visible light in the presence of a multivitamin complex containing flavin mononucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号