首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human blood group A and B glycosyltransferases catalyze the transfer of GalNAc and Gal, to the (O)H-precursor structure Fuc alpha (1-2)Gal beta-OR to form the blood group A and B antigens, respectively. Changing four amino acids (176, 235, 266 and 268) alters the specificity from an A to a B glycosyltransferase. A series of hybrid blood group A/B glycosyltransferases were produced by interchanging these four amino acids in synthetic genes coding for soluble forms of the enzymes and expressed in Escherichia coli. The purified hybrid glycosyltransferases were characterized by two-substrate enzyme kinetic analysis using both UDP-GalNAc and UDP-Gal donor substrates. The A and B glycosyltransferases were screened with other donor substrates and found to also utilize the unnatural donors UDP-GlcNAc and UDP-Glc, respectively. The kinetic data demonstrate the importance of a single amino acid (266) in determining the A vs. B donor specificity.  相似文献   

2.
3.
4.
5.
Nucleotide excision repair in humans involves the coordinated actions of 8-10 proteins. To understand the roles of each of these proteins in excision it is necessary to develop an in vitro excision repair system reconstituted entirely from purified proteins. Towards this goal we have expressed in E. coli two of the 8 genes known to be essential for the excision reaction. XPAC and ERCC1 were expressed as fusion proteins with the Escherichia coli maltose binding protein (MBP) and purified to > 80% homogeneity by affinity chromatography. The purified proteins either as fusions or after cleavage from the MBP were able to complement the CFE of cells with mutations in the corresponding genes in an excision assay with thymine dimer containing substrate.  相似文献   

6.
Expression of the bacterio-opsin gene in Escherichia coli has been described in the accompanying papers. We now describe rapid and efficient methods for the purification of the E. coli-expressed bacterio-opsin. Bacterio-opsin can be extracted from E. coli membranes in a denatured form by using an organic solvent containing chloroform, methanol, water, and triethylamine. The bacterio-opsin, enriched to 30-50% in the extract, can be further purified to 90% by ion-exchange chromatography on DEAE-Trisacryl or hydroxylapatite chromatography in organic solvents or by preparative sodium dodecyl sulfate gel electrophoresis. In appropriate aqueous phospholipid/detergent mixtures, up to 80% of purified protein refolds and binds retinal covalently to regenerate the bacteriorhodopsin chromophore. When reconstituted into phospholipid vesicles, bacteriorhodopsin from E. coli shows the expected proton pumping activity in response to illumination.  相似文献   

7.
Analysis by polyacrylamide gel electrophoresis of the proteins coded by a λtonB transducing phage, after infection of UV-irradiated bacteria, revealed the presence of at least 7 new polypeptides. Three of these were identified as proteins of the trp operon whilst three others were deleted by a spontaneous mutation in the tonB region carried by the phage. A single polypeptide, molecular weight 40,000 was absent from a phage carrying a proflavine induced mutation in tonB. We conclude that this protein, which was localised in the inner membrane by sarkosyl fractionation of the envelope, is the tonB product.  相似文献   

8.
The full-length normal and T24 mutant human H-ras proteins and two truncated derivatives of the T24 mutant were expressed efficiently in Escherichia coli. The proteins accumulated to 1 to 5% of total cellular protein, and each was specifically recognized by anti-ras monoclonal antibodies. The two full-length proteins as well as a carboxyl-terminal truncated derivative (deleted for 23 amino acid residues) were soluble upon cell lysis and were purified to 90% homogeneity without the use of denaturants. In contrast, an amino-terminal truncated ras derivative (deleted for 22 amino acid residues) required treatment with urea for its solubilization. The guanine nucleotide binding activity of these four proteins was assessed by a combination of ligand binding on proteins blots, immunoprecipitation, and standard filter binding procedures. The full-length proteins showed similar binding kinetics and a stoichiometry approaching 1 mol of GTP bound per mol of protein. The showed similar binding kinetics and a stoichiometry approaching 1 mol of GTP bound per mol of protein. The carboxyl-terminal truncated protein also bound GTP, but to a reduced extent, whereas the amino-terminal truncated protein did not have binding activity. Apparently, the carboxyl-terminal domain of ras, although important for transforming function, does not play a critical role in GTP binding.  相似文献   

9.
The high-level expression of human interleukin-1 beta in Escherichia coli is described. The protein contributes about 12% of the total cell protein and is associated with the soluble cytoplasmic fraction of the cell. A method for the purification of the protein is given which is based on anion- and cation-exchange chromatographies. The isolated protein, shown to be homogeneous by several analytical methods, has been characterized by amino acid analysis, N- and C-terminal sequence analysis and analytical centrifugation. The protein is biologically active as demonstrated by two different in vitro assays, namely, the mononuclear cell factor (IL-1/MCF) assay and lymphocyte activating factor (IL-1/LAF) assay. The specific activities determined with the IL-1/MCF and IL-1/LAF assays, are 2 X 10(7) and 4 X 10(7) units mg-1, respectively.  相似文献   

10.
Abstract Two monoclonal antibodies (MAbs) were produced in Balb/c mice by immunization with recombinant gp41 derived from expression of λ-BH10 cDNA of the human immunowdeficiency virus-1 (HIV-1) in the prokaryotic expression vector pEX-41 [1, 2]. Characterization of the epitopes recognized by these MAbs was done with HIV-1 envelope (env) fusion proteins expressed in Escherochia coli encoding ten distinct segments of the env proteins [3]. In comparison, another mouse MAb, M25 [4], a human MAb directed against gp41, which was produced by the xeno hydridoma line 3D6 [5, 6] and a pool of human patient sera containing antibodies to HIV-1 were tested. We were able to demonstrate that the epitopes recognized by our MAbs are located betweeni arg732 and ser759 [7] of the HIV-1 env glycoprotein gp160 of HTLV-III strain B. M25 reacted with epitopes between ser647 and pro731, which includes the hydrophobic transmembrane region of gp41 [4]. The human MAb against gp41, 3D6 [5, 6] reacts with epitopes between ile474 and trp646, a polypeptide stretch consisting of gp120 and gp41 specific amino acids. The human serum pool, positive for HIV-1 antibodies, reacted predominantly with antigenic determinants locatedp between ile474 and leu863. The recombinant env fusion proteins were initially produced to test the immunoreactivity with patient sera and to characterize epitopes which are relevant for immunodiagnostic purposes [3]. In this study, we showed that the set of recombinant evr proteins is also a simple and accurate tool for the characterization of MAbs directed to the HIV envelope proteins.  相似文献   

11.
The preS1 of hepatitis B virus (HBV) is located at the outermost part of the envelope protein and possesses several functionally important regions such as hepatocyte receptor-binding site and virus-neutralizing epitopes. As the first step to understand the structure-function relationship for the preS1 antigen, we have purified the preS1 and performed its structural characterization by circular dichroism (CD) spectroscopy. The preS1 was purified to near homogeneity from bacterially expressed glutathione S-transferase (GST)-preS1 fusion protein by two-step purification, affinity chromatography on glutathione-agarose column, and cation-exchange chromatography on Mono S column. The CD analysis showed that the purified preS1, which was largely unstructured in aqueous solution, acquired a significant (16%) alpha-helical structure when analyzed in 50% trifluoroethanol or 20 mM SDS. The results suggest that the preS1 assumes a mainly unstructured conformation and may form induced secondary structures upon binding to target proteins or under hydrophobic environment.  相似文献   

12.
We have constructed and analyzed amino terminally deleted analogs of IL-6. Progressively shortened variants of mature IL-6 were constructed at the cDNA level and expressed in Escherichia coli. Mutant proteins were recovered from refractile bodies by solubilizing in 6 M guanidine-HCl. The mutant protein concentration in these preparations was estimated by Western blotting by using an IL-6-specific mAb and the biologic activity was measured in the B9 (hybridoma growth factor) assay. The first 28 amino acids of mature IL-6 could be removed without significantly affecting biologic activity. A further removal of amino acids 29 and 30 resulted in an approximately 50-fold decrease, whereas removal of amino acids 31 to 34 virtually abolished the activity. The mutants showed the same reaction pattern in three other IL-6 assays: induction of murine thymocyte proliferation, induction of fibrinogen synthesis by a human hepatoma cell line (HepG2), and the induction of IgM synthesis by an EBV-transformed B cell line. This suggests that a single functional domain might be responsible for all four activities of IL-6.  相似文献   

13.
G M Myles  J E Hearst  A Sancar 《Biochemistry》1991,30(16):3824-3834
UvrA is the ATPase subunit of the DNA repair enzyme (A)BC excinuclease. The amino acid sequence of this protein has revealed, in addition to two zinc fingers, three pairs of nucleotide binding motifs each consisting of a Walker A and B sequence. We have conducted site-specific mutagenesis, ATPase kinetic analyses, and nucleotide binding equilibrium measurements to correlate these sequence motifs with activity. Replacement of the invariant Lys by Ala in the putative A sequences indicated that K37 and K646 but not K353 are involved in ATP hydrolysis. In contrast, substitution of the invariant Asp by Asn in the B sequences at positions D238, D513, or D857 had little effect on the in vivo activity of the protein. Nucleotide binding studies revealed a stoichiometry of 0.5 ADP/UvrA monomer while kinetic measurements on wild-type and mutant proteins showed that the active form of UvrA is a dimer with 2 catalytic sites which interact in a positive cooperative manner in the presence of ADP; mutagenesis of K37 but not of K646 attenuated this cooperativity. Loss of ATPase activity was about 75% in the K37A, 86% in the K646A mutant, and 95% in the K37A-K646A double mutant. These amino acid substitutions had only a marginal effect on the specific binding of UvrA to damaged DNA but drastically reduced its ability to deliver UvrB to the damage site. We find that the deficient UvrB loading activity of these mutant UvrA proteins results from their inability to associate with UvrB in the form of (UvrA)2(UvrB)1 complexes. We conclude that UvrA forms a dimer with two ATPase domains involving K37 and K646 and that the work performed by ATP hydrolysis is the delivery of UvrB to the damage site on DNA.  相似文献   

14.
Q Z Ye  L L Johnson  D J Hupe  V Baragi 《Biochemistry》1992,31(45):11231-11235
Human stromelysin is a member of the matrix metalloproteinase family involved in connective tissue degradation. The stromelysin catalytic domain (SCD) lacking both propeptide and C-terminal fragment was expressed in Escherichia coli in soluble and insoluble forms. The insoluble SCD was refolded to the active form in high yield. The protein showed remarkable thermal stability and was able to cleave a thiopeptolide substrate and its natural substrate proteoglycan. The stable and active 20-kDa protein provides an opportunity to elucidate the structure as well as the mechanism of catalysis and inhibition for matrix metalloproteinases.  相似文献   

15.
16.
CD28 and CTLA-4 are homologous cell surface proteins expressed by T cells. CD28 is constitutively expressed by most T cells, whereas CTLA-4 is expressed by activated T cells. Both proteins are ligands for the costimulatory molecules CD80 and CD86 expressed by activated B cells, macrophages, and dendritic cells. A fusion protein comprising the CTLA-4 extracellular domain joined to a human immunoglobulin heavy chain constant region (CTLA4Ig) binds CD80 and CD-86 with high affinity and inhibits CD80/CD86-dependent immune responses in vitro and in vivo. Attempts at producing the CTLA-4 extracellular domain as an unfused protein have met with limited success. Here we describe the expression and purification of the CTLA-4 extracellular domain as a nonfused protein in Escherichia coli. The 12.5-kDa CTLA-4 extracellular domain was insoluble when expressed in E. coli and required denaturation, reduction, and refolding steps to become soluble and assume its proper conformation. The protein refolded into a mixture of monomers, disulfide-linked dimers, and higher order disulfide-linked aggregates. sCTLA-4 dimers were the predominant refold form when air was used as the oxidizing agent during the refold procedure. Purified sCTLA-4 dimers were 10- to 50-fold more potent than sCTLA-4 monomers at inhibiting T cell activation using a CD80-dependent in vitro bioassay.  相似文献   

17.
We report the expression of the human muscle (CK-MM) and brain (CK-BB) creatine kinases in Escherichia coli. The proteins have been purified to apparent homogeneity and several of their physical and kinetic properties investigated. In the process, we have conclusively verified the correct DNA sequence of the genes encoding the respective isozymes, and determined the correct primary structure and mass of the gene products. Alignment of the primary sequences of these two enzymes shows 81% sequence identity with each other, and no obvious gross structural differences. However, Western blot analyses demonstrated the general lack of antigenic cross-reactivity between these isozymes. Preliminary kinetic analyses show the K m and k cat values for the creatine and MgATP substrates are similar to values reported for other isozymes from various tissues and organisms. The human muscle and brain CKs do not, however, exhibit the synergism of substrate binding that is observed, for example, in rabbit muscle creatine kinase.  相似文献   

18.
OsNifU1A is a NifU-like rice (Oryza sativa) protein, discovered recently. Its amino acid sequence is very homologous to the sequence of cyanobacterial CnfU and to the sequences of NifU C-terminal domains. Based on its sequence, OsNifU1A is probably a modular structure consisting of two CnfU-like domains, with domain I (formed by residues Leu73 to Gly153) and domain II (formed by residues Leu154 to Ser226). Domain I have a conserved Cys-X-X-Cys motif, which may function as an iron-sulfur cluster assembly scaffold. Domain II lacks a Cys-X-X-Cys motif and therefore, cannot function analogously. Other NifU-like proteins, with sequences homologous to OsNifU1A domain II, have been identified during plant genomic projects; however, the biological roles of these domains remain unknown. We successfully constructed an Escherichia coli expression system for OsNifU1A domain II that enabled us to synthesize and purify milligram quantities of protein for use in structural and functional studies. Using the Gateway system, we built DNA sequences corresponding to two OsNifU1A domain II fusion proteins. One construct has a (His)6 sequence upstream of the OsNifU1A domain II sequence; the other has an upstream thioredoxin-(His)6 sequence. Recombinant OsNifU1A domain II fusion proteins were extracted from E. coli inclusion bodies by dissolving them in 6 M guanidine-HCl. About 36% of the total (His)6/OsNifU1A domain II fusion protein initially present remained soluble after guanidine-HCl was completely removed by step-wise dialysis; whereas, recovery of soluble Trx-(His)6 fusion protein was about 60% of the total cell lysate. About 2 mg of 15N-labeled OsNifU1A domain II was purified for NMR spectral studies. Examination of the OsNifU1A domain II 1H-15N HSQC NMR spectrum indicated that the purified protein was monomeric and correctly folded. Therefore, we established an efficient procedure for synthesis and purification of 15N-labeled OsNifU1A domain II in quantities sufficient for heteronuclear NMR solution structure studies.  相似文献   

19.
The methylcobalamin (MeB12) homocysteine transmethylase activity and the B12-dependent 5-methyltetrahydrofolate (5-MeH4-folate) homocysteine transmethylase activity in cell-free extracts of E. coli B are catalytic functions of separate sites on a single enzyme-protein. Whether these two transmethylases exactly co-purify from extracts, and are protected against p-chloromercuribenzoate (pCMB), however, depends on whether or not the cells were previously cultured in the presence of approximately 1 × 10?8 m cyanocobalamin (CNB12). E. coli B (met H?) contains a defective 5-MeH4-folate apoenzyme which does not tightly bind B12 as a prosthetic group. While the folate-inactive apoenzyme from the mutant strain still catalyzes MeB12 homocysteine transmethylation, this second site on the defective protein is not protected by media CNB12 against pCMB inactivation. Both transmethylase activities are repressed 50% by growth in the presence of 10 m l-methionine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号