首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spongiform encephalopathies, also called "prion diseases", are fatal degenerative diseases of the central nervous system which can occur in animals (such as the "mad cow disease" in cattle) and also in humans. This paper presents a novel medical theory concerning the pathogenic mechanisms for various human and animal spongiform encephalopathies. It is hypothesized that various forms of prion diseases are essentially autoimmune diseases, resulting from chronic autoimmune attack of the central nervous system. A key step in the pathogenic process leading towards the development of spongiform encephalopathies involves the production of specific autoimmune antibodies against the disease-causing prion protein (PrPsc) and possibly other immunogenic macromolecules present in the brain. As precisely explained in this paper, the autoimmune antibodies produced against PrPsc are responsible for the conversion of the normal cellular prion protein (PrPc) to PrPsc, for the accumulation of PrPsc in the brain and other peripheral tissues, and also for the initiation of an antibody-mediated chronic autoimmune attack of the central nervous system neurons, which would contribute to the development of characteristic pathological changes and clinical symptoms associated with spongiform encephalopathies. The validity and correctness of the proposed theory is supported by an overwhelming body of experimental observations that are scattered in the biomedical literature. In addition, the theory also offers practical new strategies for early diagnosis, treatment, and prevention of various human and animal prion diseases.  相似文献   

2.
Due to its sensitivity, immunohistochemistry (IHC) of abnormal prion protein (PrPsc) is used to study experimental and natural cases of transmissible spongiform encephalopathies (TSEs) such as Creutzfeldt-Jakob disease in humans or scrapie and bovine spongiform encephalopathy (BSE) in animals. The limits of detection are particularly critical when PrPsc IHC is used for diagnostic purposes. In this article, we describe for the first time the use of streptomycin sulfate in IHC, providing a novel original and easy way to amplify specifically PrPsc immunohistochemical detection in natural cases of BSE and scrapie, as well as in experimental TSEs in mice models using two different PrP antibodies.  相似文献   

3.
Because of its sensitivity, immunohistochemistry (IHC) of abnormal prion protein (PrPsc) is used more often in the diagnosis of transmissible spongiform encephalopathies (TSEs), such as scrapie and bovine spongiform encephalopathy (BSE). PrPsc IHC requires a combination of pretreatments (chemical, heating, and enzymatic). The method of application may depend on the anti-prion antibody considered. If these pretreatments are efficient for diagnostic purpose, it may, however, be interesting to use an alternative method to efficiently detect PrPsc IHC immunohistochemically using chemical pretreatments solely. Here we describe such pretreatments reporting the difficulty (section adhesion) but also the potential advantages of such methods (easy, quick, inexpensive, and amplifying effect).  相似文献   

4.
Bovine spongiform encephalopathy (BSE) in cattle is a neurodegenerative disease belonging to the transmissible spongiform encephalopathies, a group of diseases including sheep scrapie and human Creutzfeldt-Jakob disease. The pathological characteristics of BSE are vacuolation, mild gliosis, little neuronal degeneration without inflammatory process and abnormal prion protein (PrPsc) accumulation. The aim of this study was to define precisely the neuropathology of BSE in French cases by assessing the distributions of vacuolar lesions and PrPsc within cattle brains. We showed that vacuolation and PrPsc accumulation varied from one structure to the other, and most often coexisted. These distributions were in accordance with British and Portuguese data previously published. Seven types of PrPsc immunolabelling were described based on morphology and localisation. Besides mild gliosis mainly associated with vacuolation, we observed a very slight neuronal apoptosis. In addition, we saw a moderate vimentin labelling colocalised with vacuolation, a discrete ubiquitin staining and no Tau protein staining. This study provides precise histopathological data that will be completed with a quantitative study on more than 100 obex samples of French BSE cases.  相似文献   

5.
The histological diagnosis of transmissible spongiform encephalopathies (TSEs), such as scrapie and bovine spongiform encephalopathy (BSE), relies on identification in the brain of spongiosis, gliosis, and neuron loss without inflammatory lesions. Because of its sensitivity, immunohistochemistry of abnormal prion protein (PrPsc) is of great help in this diagnosis and can be used on its own or complementary to the biochemical detection of PrPsc. However, in some cases no formalin-fixed material is available, rendering its use as a complementary method impossible. For that purpose, we studied the possibility of detecting PrPsc immunohistochemically in fixed brain samples that had been previously frozen and used for Western blotting analysis. We compared freshly and fixed-frozen brain samples originating from the same sheep, either affected or unaffected with scrapie. We also studied fixed-frozen brain samples from scrapie-affected goats and from cows showing BSE. We showed that in all the species tested, despite damage to the histological structures, PrPsc was still detectable in the fixed-frozen brain sections without unspecific background staining. Notwithstanding the limited number of cases thus far analyzed, we have already demonstrated the possibility of using PrPsc immunohistochemistry on fixed-frozen brain samples with very good efficacy, thus rendering possible its use for diagnostic purposes in TSEs.  相似文献   

6.
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by amyloid deposition of protein-prion (PrPsc), the pathogenic isoform of the host cellular protein PrPc, in the immune and central nervous systems. In the absence of definitive data on the nature of the infectious agent, PrPsc immunohistochemistry (IHC) constitutes one of the main methodologies for pathogenesis studies of these diseases. In situ PrPsc immunolabeling requires formalin fixation and paraffin embedding of tissues, followed by post-embedding antigen retrieval steps such as formic acid and hydrated autoclaving treatments. These procedures result in poor cellular antigen preservation, precluding the phenotyping of cells involved in scrapie pathogenesis. Until now, PrPsc-positive cell phenotyping relied mainly on morphological criteria. To identify these cells under the PrPsc IHC conditions, a new, rapid, and highly sensitive PrPsc double-labeling technique was developed, using a panel of screened antibodies that allow specific labeling of most of the cell subsets and structures using paraffin-embedded lymphoid and neural tissues from sheep, leading to an accurate identification of ovine PrPsc-accumulating cells. This technique constitutes a useful tool for IHC investigation of scrapie pathogenesis and may be applicable to the study of other ovine infectious diseases.  相似文献   

7.
We produced transgenic mice expressing the sheep prion protein to obtain a sensitive model for sheep spongiform encephalopathies (scrapie). The complete open reading frame, with alanine, arginine, and glutamine at susceptibility codons 136, 154, and 171, respectively, was inserted downstream from the neuron-specific enolase promoter. A mouse line, Tg(OvPrP4), devoid of the murine PrP gene, was obtained by crossing with PrP knockout mice. Tg(OvPrP4) mice were shown to selectively express sheep PrP in their brains, as demonstrated in mRNA and protein analysis. We showed that these mice were susceptible to infection by sheep scrapie following intracerebral inoculation with two natural sheep scrapie isolates, as demonstrated not only by the occurrence of neurological signs but also by the presence of the spongiform changes and abnormal prion protein accumulation in their brains. Mean times to death of 238 and 290 days were observed with these isolates, but the clinical course of the disease was strikingly different in the two cases. One isolate led to a very early onset of neurological signs which could last for prolonged periods before death. Independently of the incubation periods, some of the mice inoculated with this isolate showed low or undetectable levels of PrPsc, as detected by both Western blotting and immunohistochemistry. The development of experimental scrapie in these mice following inoculation of the scrapie infectious agent further confirms that neuronal expression of the PrP open reading frame alone is sufficient to mediate susceptibility to spongiform encephalopathies. More importantly, these mice provide a new and promising tool for studying the infectious agents in sheep spongiform encephalopathies.  相似文献   

8.
Bovine spongiform encephalopathy (BSE) is a transmissible neurodegenerative disease of cattle. Clinical diagnosis can be confirmed by investigation of both spongiform changes and abnormal prion protein (PrPsc), a marker considered specific for the disease. Tissue autolysis, often unavoidable in routine field cases, is not compatible with histological examination of the brain even though PrPsc is still detectable by immunoblotting. To determine how autolysis might affect accurate diagnosis using PrPsc immunohistochemistry, we studied 50 field samples of BSE brainstem (obex) with various degrees of autolysis. We demonstrated that the antigen-unmasking pretreatments necessary for PrPsc immunohistochemistry were compatible with the preservation of autolyzed brain sections and that PrPsc detection was unaffected by autolysis, even though anatomic markers were sometimes lost. In tissue samples in which anatomic sites were still recognizable, PrPsc accumulation was detected in specific gray matter nuclei. In samples with advanced autolysis, PrPsc deposits were still observed, at least at the cellular level, as an intraneuronal pattern. We found that the sensitivity of PrPsc immunohistochemistry as a diagnostic method for BSE was undiminished even by severe tissue autolysis.  相似文献   

9.
Intracerebral inoculation of 263K Scrapie brain homogenate (PrPsc) with a self-assembling RADA-peptide (RADA) significantly delayed disease onset and increased hamster survival. Time of survival was dependent on the dose of RADA and pre-incubation with PrPsc prior to inoculation. RADA treatment resulted in the absence of detectable PrPsc at 40 d followed by an increased rate of PrPsc accumulation at 75 d up to sacrifice. In all PrPsc inoculated animals, clinical symptoms were observed ∼10 d prior to sacrifice and brains showed spongiform degeneration with Congo red positive plaques. A time-dependent increase in reactive gliosis was observed in both groups with more GFAP detected in RADA treated animals at all time points. The PrP protein showed dose-dependent binding to RADA and this binding was competitively inhibited by Congo Red. We conclude that RADA disrupts the efficacy of prion transmission by altering the rate of PrPsc accumulation. This is the first demonstration that a self-assembling biomolecular peptide can interact with PrPsc, disrupt the course of Scrapie disease process, and extend survival.  相似文献   

10.
The main step in the pathogenesis of transmissible spongiform encephalopathies (TSE) is the conformational change of the normal cellular prion protein (PrP(C)) into the abnormal isoform, named prion (PrP(Sc)). Since PrP is a highly conserved protein, the production of monoclonal antibodies (mAbs) of high specificity and affinity to PrP is a difficult task. In the present study we show that it is possible to overcome the unresponsiveness of the immune system by immunizing wild-type BALB/c mice with a 13 amino acid PrP peptide from the C-terminal part of PrP, bound to the keyhole limpet hemocyanin (KLH). Immunization induced predominantly anti-PrP(Sc) humoral immune response. Furthermore, we were able to obtain a panel of mAbs of IgG class specific for different non-self-conformations of PrP, with anti-PrP(Sc)-specific mAbs being the most abundant.  相似文献   

11.
Tongue involvement by prion spreading was shown to be a common outcome after oral or intracranial experimental challenge with scrapie and transmissible mink encephalopathy sources in rodent models. It is also known that bovine spongiform encephalopathy, which is pathogenic for humans, is experimentally transmissible to sheep and can lead to a disease indistinguishable from scrapie. A recent European Food Safety Authority opinion recommended research into PrPsc accumulation in the tongues of ruminants. We report on the detection of PrPsc in the tongues of seven scrapie-infected sheep by immunohistochemistry and Western blotting.  相似文献   

12.
朊病毒病,即传染性海绵状脑病(transmissible spongiform encephalopathies, TSEs),是一类传染性、致死性神经退行性疾病。在朊病毒病的病理过程中,细胞正常朊蛋白PrP。转化为异常构象的PrP是至关重要的,但是PrP‘的正常生理功能仍不清楚。国外学者利用比较基因组学发现了-个新的朊蛋白相关蛋白-shadoo(Sho)。Sho与PrP。在氨基酸序列和细胞定位的相似性及主要在脑组织表达,使它成为-个非常值得研究的PrP相关蛋白。对Sho可能存在的与PrP。重叠的功能甚至直接相互作用的研究工作,将对今后揭示PrPc正常生理功能以及揭示Pfion病发病机制具有重要现实意义。  相似文献   

13.
In transmissible spongiform encephalopathies (TSE), such as scrapie in animals and Creutzfeldt-Jakob disease in humans, the central event is the conversion of a host-encoded amyloidogenic protein (PrPc) into an abnormal isoform (PrPsc) that accumulates as amyloid in TSE brain. PrPc is a membrane sialoglycoprotein synthesized in the central nervous system and elsewhere. We have examined the ultrastructural localization of PrPc in numerous hamster and some human extracerebral tissues, by means of a post-embedding electron-microscopic method combined with immunogold labeling. In stomach, intestine, lung, and kidney from hamsters, and in stomach, kidney, and spleen from humans, immunogold labeling specific for PrPc is observed on various cellular substructures related to secretory pathways: Golgi apparatus, secretory globules, and plasma membrane. In mucous epithelial cells of stomach and intestine, PrPc appears to be concentrated in secretory globules, suggesting a role for PrPc in the secretory function of the digestive tract. The secretory aspect of PrPc may be a key to understanding the physiopathological mechanisms underlying TSE.  相似文献   

14.
We assessed three different visualization systems used routinely in research and diagnosis of transmissable spongiform encephalopathies (TSEs) to demonstrate whether the methodology applied to immunohistochemical (IHC) examination may alter the results concerning detection of prion protein (PrPsc) in the lymphoreticular system (LRS): avidin-biotin-peroxidase (Vectastain ABC kit; Vector), Envision (DAKO), and catalyzed signal amplification (CSA; DAKO). The study aimed to determine which of these showed the highest sensitivity, with the hope of providing an accurate tool for pathogenesis and preclinical diagnosis research in TSEs. Histological sections from palatine tonsils, spleen, GALT (ileum and ileocecal valve), and lymph nodes from sheep belonging to a Spanish scrapie-positive flock were processed by IHC using L42 as primary antibody. As substrate chromogen, diaminobenzidine was used, and all slides were subjectively assessed by light microscopy. A further study using an image analyzer software system was carried out to confirm that the conclusion provided by microscopic examination was objective. The CSA system showed the highest sensitivity in all cases, increasing both variables assessed: the number of follicles that were PrPsc-positive was detected as well as the intensity of immunostaining in each of them.  相似文献   

15.
Mutations within a host cellular protein, PrP, have been associated with disease in the transmissible spongiform encephalopathies. Murine neuroblastoma cells persistently infected with mouse scrapie accumulate protease-resistant PrP (PrP-res), the abnormal form of PrP associated with disease in the transmissible spongiform encephalopathies. These cells provide a controlled system in which to study the molecular interactions which are important in the formation of PrP-res. We have expressed recombinant PrP molecules in mouse scrapie-infected murine neuroblastoma cells and assayed the effect of these heterologous PrP genes on the formation and accumulation of PrP-res. The results demonstrate that expression of heterologous PrP molecules which differ from the endogenous PrP by as little as one amino acid can profoundly interfere with the overall accumulation of PrP-res. The data suggest that precise interactions between homologous PrP molecules are important in PrP-res accumulation and that heterologous PrP molecules can block these interactions.  相似文献   

16.
Is loss of function of the prion protein the cause of prion disorders?   总被引:4,自引:0,他引:4  
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases that involve misfolding of the prion protein. Recent studies have provided evidence that normal prion protein might have a physiological function in neuroprotective signaling, suggesting that loss of prion protein activity might contribute to the pathogenesis of prion disease. However, studies using knockout animals do not support the loss-of-function hypothesis and argue that prion neurodegeneration might be associated with a gain of a toxic activity by the misfolded prion protein. Thus, the mechanism of neurodegeneration in spongiform encephalopathies remains enigmatic.  相似文献   

17.
朊病毒疾病   总被引:1,自引:0,他引:1  
王冬梅 《生命科学》1999,11(5):201-208
朊病毒是一种蛋白性质的感染颗粒,它能引起动物的一类大脑功能紊乱疾病:可传染海绵样脑病(TSE)。本文就朊病毒、朊病毒引起的疾病、牛海绵样脑病(BSE)及BSE能否传给人类进行一些讨论。  相似文献   

18.
The recent occurrence of the new variant of Creutzfeldt-Jakob disease (CJD), probably transmitted to humans by cattle affected by the bovine form of spongiform encephalopathy, has generated renewed interest in the clinical issues related to human spongiform encephalopathies. Using the current set of diagnostic tools, these rare but devastating conditions may be difficult to diagnose with accuracy before death. The objective of the present communication is to describe the discovery of a potential cerebrospinal fluid (CSF) and plasmatic marker of human transmissible spongiform encephalopathies. A preliminary two-dimensional electrophoresis approach highlighted a potential neurodegenerative disorder marker called the fatty acid binding protein, FABP. Its heart form, H-FABP, was investigated in a small group of CJD affected patients (n = 8 ) by an immunoassay approach. The amount of FABP appeared to be significantly (p< or = 0.05) increased in all tested samples. H-FABP detection could therefore be helpful as a blood screening test for a pre-mortem diagnosis of the disease and also to prevent the risk of iatrogenic transmission of CJD through blood transfusion.  相似文献   

19.
Of all the prion proteins identified to date, the agent responsible for transmissible spongiform encephalopathies is one of the least characterized. Nevertheless, recent advances in the prion field should lead to important progress in our knowledge of mammalian prions. First, the demonstration that PrP aggregates generated in vitro infect animals and cause neuronal death is a considerable breakthrough. Second, new structural data provide direct insight into the structure of the infectious agent. Third, the study of yeast prions unveiled what might be the structural basis for the strain phenomena in transmissible spongiform encephalopathies.  相似文献   

20.
Doppel (Dpl) protein shares some structural features with prion protein (PrP), whose pathologic isoform (PrPsc) is considered to be the causative agent of transmissible spongiform encephalopathies. Dpl is mainly expressed in testes but, when ectopically expressed in the central nervous system, is neurotoxic. We have examined the expression pattern of Dpl and PrP on bovine lymphoid tissues and circulating leukocytes. A polyclonal anti-Dpl antibody along with a panel of monoclonal antibodies specific for leukocyte membrane antigens or PrP were used to examine frozen sections from spleen, lymph nodes, and bone marrow by immunohistochemistry. Blood was analyzed by flow cytometry. Double staining was used to study the possible coexpression of the two proteins and to characterize cells expressing Dpl and/or PrP. Dpl was expressed in B-cells, in dendritic cells within lymphoid follicles, bone marrow, circulating myeloid cells, and circulating B-cells. The distribution of Dpl was quite similar to that of PrP. The only differences in expression observed concerned the low number of Dpl+ cells in lymph nodes and the strong Dpl positivity of circulating granulocytes. The two proteins were rarely co-expressed, suggesting an independent expression mechanism in resting cells. The role of Dpl+ leukocytes in the pathogenesis of Dpl- or PrP-induced diseases merits further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号