首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an alpha- and beta-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin-mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and beta(1)-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase beta(1)-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin-mediated cell-cell adhesion requires the Na,K-ATPase beta-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the beta(1)-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells.  相似文献   

3.
4.
5.
6.
Clusterin has been known to play important roles in cell-cell and/or cell-substratum interactions. Recently we reported the transient expression of clusterin in pancreatic endocrine cells during the early developmental stages and suggested a role in aggregating the endocrine cells for islet formation. In the present study, we have investigated the involvement of clusterin in cell-substratum interaction by the inhibition of clusterin synthesis using antisense oligonucleotide. The expression of clusterin was transiently increased as early as 2–8 h after plating the ASC-17D Sertoli cells to the culture flask, which was the period of cell attachment. In addition, up-regulation of clusterin mRNA was so much greater when the Sertoli cells were plated on the petri dish for the bacterial culture instead of in a animal cell culture flask that therefore, the cells failed to attach to it. These findings suggested that interruption of cell to plate substratum interaction might lead to over-expression of clusterin from Sertoli cells to induce cell to cell aggregation or, perhaps, to re-establish attachment with the substratum. Transfection of ASC-17D Sertoli cells with a 20-base antisense oligonucleotide against clusterin mRNA resulted in extracellular release of LDH and DNA fragmentation. Sertoli cell death by antisense oligonucleotide of clusterin was sequence specific and dose dependent. Treatment of antisense oligonucleotide induced a marked reduction of synthesis for clusterin protein, but not for clusterin mRNA expression, suggesting the translational suppression of clusterin by antisense oligonucleotide. Further, microscopic observation showed that more noticeable cell death was induced by treating the antisense prior to plating the cells than by treating after cell attachment to the plate. From these results, we speculate that down-regulation of clusterin expression in the anchorage-dependent Sertoli cells prevents them from attaching to the plate, and therefore induces cell death.  相似文献   

7.
To analyze the implication of PTEN in the control of tumor cell invasiveness, the canine kidney epithelial cell lines MDCKras-f and MDCKts-src, expressing activated Ras and a temperature-sensitive v-Src tyrosine kinase, respectively, were transfected with PTEN expression vectors. Likewise, the human PTEN-defective glioblastoma cell lines U87MG and U373MG, the melanoma cell line FM-45, and the prostate carcinoma cell line PC-3 were transfected. We demonstrate that ectopic expression of wild-type PTEN in MDCKts-src cells, but not expression of PTEN mutants deficient in either the lipid or both the lipid and protein phosphatase activities, reverted the morphological transformation, induced cell-cell aggregation, and suppressed the invasive phenotype in an E-cadherin-dependent manner. In contrast, overexpression of wild-type PTEN did not counteract Ras-induced invasiveness of MDCKras-f cells expressing low levels of E-cadherin. PTEN effects were not associated with marked changes in accumulation or phosphorylation levels of E-cadherin and associated catenins. Wild-type, but not mutant, PTEN also reverted the invasive phenotype of U87MG, U373MG, PC-3, and FM-45 cells. Interestingly, PTEN effects were mimicked by N-cadherin-neutralizing antibody in the glioblastoma cell lines. Our data confirm the differential activities of E- and N-cadherin on invasiveness and suggest that the lipid phosphatase activity of PTEN exerts a critical role in stabilizing junctional complexes and restraining invasiveness.  相似文献   

8.
The ability of carcinomas to invade and to metastasize largely depends on the degree of epithelial differentiation within the tumors, i.e., poorly differentiated being more invasive than well-differentiated carcinomas. Here we confirmed this correlation by examining various human cell lines derived from bladder, breast, lung, and pancreas carcinomas. We found that carcinoma cell lines with an epithelioid phenotype were noninvasive and expressed the epithelium-specific cell-cell adhesion molecule E-cadherin (also known as Arc-1, uvomorulin, and cell-CAM 120/80), as visualized by immunofluorescence microscopy and by Western and Northern blotting, whereas carcinoma cell lines with a fibroblastoid phenotype were invasive and had lost E-cadherin expression. Invasiveness of these latter cells could be prevented by transfection with E-cadherin cDNA and was again induced by treatment of the transfected cells with anti-E-cadherin mAbs. These findings indicate that the selective loss of E-cadherin expression can generate dedifferentiation and invasiveness of human carcinoma cells, and they suggest further that E-cadherin acts as an invasion suppressor.  相似文献   

9.
研究ABCE1对肺癌(95-D和 NCI-H446)细胞的作用.使用RNA干扰技术,抑制ABCE1基因的表达,通过Western blot 分析及FACS检测,观察ABCE1基因对E-钙黏附蛋白在95-D/NCI-H446细胞表达的影响;运用transwell 侵袭实验,观察M95-D/ NCI-H446细胞侵袭力的变化.RNA干扰ABCE1基因后,实验组与对照组相比,在48 h后可显著抑制肺癌(95-D和 NCI-H446)细胞ABCE1蛋白的表达,同时,伴随E-钙黏附蛋白的高表达,以及细胞侵袭力的降低. ABCE1基因与E-钙黏附蛋白相关,抑制ABCE1基因可增加肺癌95-D/NCI-H446细胞的E-钙黏附蛋白的表达,减低细胞的侵袭力.  相似文献   

10.
Yu J  Miao Y  Xu H  Liu Y  Jiang G  Stoecker M  Wang E  Wang E 《PloS one》2012,7(5):e37008
P120-catenin (p120ctn) exerts important roles in regulating E-cadherin and invasiveness in cancer cells. However, the mechanisms by which p120ctn isoforms 1 and 3 modulate E-cadherin expression are poorly understood. In the current study, HBE, H460, SPC and LTE cell lines were used to examine the effects of p120ctn isoforms 1A and 3A on E-cadherin expression and cell invasiveness. E-cadherin was localized on the cell membrane of HBE and H460 cells, while it was confined to the cytoplasm in SPC and LTE cells. Depletion of endogenous p120ctn resulted in reduced E-cadherin expression; however, p120ctn ablation showed opposite effects on invasiveness in the cell lines by decreasing invasiveness in SPC and LTE cells and increasing it in HBE and H460 cells. Restitution of 120ctn isoform 1A restored E-cadherin on the cell membrane and blocked cell invasiveness in H460 and HBE cells, while it restored cytoplasmic E-cadherin and enhanced cell invasiveness in SPC and LTE cells. P120ctn isoform 3A increased the invasiveness in all four cell lines despite the lack of effect on E-cadherin expression, suggesting a regulatory pathway independent of E-cadherin. Moreover, five p120ctn isoform 1A deletion mutants were constructed and expressed in H460 and SPC cells. The results showed that only the M4 mutant, which contains N-terminal 1-54 amino acids and the Armadillo repeat domain, was functional in regulating E-cadherin and cell invasiveness, as observed in p120ctn isoform 1A. In conclusion, the N-terminal 1-54 amino acid sequence and Armadillo repeat domain of p120ctn isoform 1A are indispensable for regulating E-cadherin protein. P120ctn isoform 1A exerts opposing effects on cell invasiveness, corresponding to the subcellular localization of E-cadherin.  相似文献   

11.
In our study, we found that bone morphogenetic protein 4 (BMP4) has a novel effect as an inducer of epithelial-mesenchymal transition (EMT) on Panc-1 cells, a human pancreatic carcinoma cell line. BMP4-treated Panc-1 cells showed loose cell contacts and a scattered, fibroblast-like appearance along with E-cadherin downregulation, Vimentin upregulation and enhanced cell migration, which are characteristic of EMT. BMP4 treatment also induced homeobox gene MSX2 expression, which we previously showed to be associated with EMT in pancreatic carcinoma cells. BMP4 treatment activated the Smad signaling pathway, and extracellular signal-related kinase (ERK) and p38 mitogen-activated kinase (MAPK) pathways in these cells. MSX2 was markedly induced by BMP4 through the ERK and p38 MAPK pathways in collaboration with the Smad signaling pathway. The repression of E-cadherin, induction of Vimentin and enhanced cell migration disappeared when siRNA-based MSX2 downregulated pancreatic cancer cells were treated with BMP4. These findings indicate that BMP4 may be involved in pancreatic carcinoma development through the promotion of EMT and that MSX2 is indispensable to this process.  相似文献   

12.
Ndrg2基因表达对胃癌细胞增殖调控及其机理的研究   总被引:8,自引:0,他引:8  
为研究Ndrg2基因在人类肿瘤发生发展中的作用,以不表达Ndrg2基因的胃癌细胞系HGC-27和表达Ndrg2基因的胃癌细胞系SGC-7901作为对比材料,以Ndrg2基因转染HGC-27胃癌细胞系,以及用Ndrg2的反义寡核苷酸封闭SGC-7901胃癌细胞系中Ndrg2基因的表达.发现Ndrg2可以抑制HGC-27胃癌细胞的软琼脂集落形成,有一定诱导细胞凋亡的作用,对细胞周期蛋白E的表达有明显下调作用.当封闭了SGC-7901胃癌细胞中Ndrg2基因表达的软琼脂集落形成受到抑制,流式细胞仪检测发现此时的SGC-7901细胞周期被阻滞在G1期,细胞周期蛋白D1和E表达下调.Ndrg2基因对两种肿瘤细胞中的细胞外信号调节激酶(ERK)和P38的表达也有不同的影响.  相似文献   

13.
Summary 1. We investigated the possible involvement of tau proteins in the neurotoxic process activated by glutamate using the oligonucleotide antisense strategy.2. We found that pretreatment of granule cells with an antisense oligonucleotide of the tau gene completely prevented the increase in tau immunoreactivity induced by glutamate.3. A significant amount of the tau antisense oligonucleotide (about 1 to 2% of total) was taken up by the cells and remained stable in the cells for at least 60 min. A dose-response study revealed that 25µM tau antisense oligonucleotide was the most efficacious concentration in terms of prevention of glutamate-induced tau immunoreactivity increases, without affecting basal tau expression. Higher concentrations of tau oligonucleotide antisense reduced tau immunoreactivity in control cells.4. Significantly, the concentration-response curve of glutamate for inducing neuronal death in cells pretreated with tau antisense oligonucleotide showed a shift to the right compared to those obtained in untreated or tau sense oligonucleotide-treated cells.5. Since inhibition of tau synthesis does not completely prevent but only decreases the neuronal sensitivity to glutamate, it is tempting to speculate that accumulation of tau within the neuron in response to glutamate represents one of the molecular risk factors lowering the safety margin of neurons to excitotoxic-induced injury.  相似文献   

14.
Cl- transport proteins expressed in a Calu-3 airway epithelial cell line were differentiated by function and regulation by protein kinase C (PKC) isotypes. mRNA expression of Cl- transporters was semiquantitated by RT-PCR after transfection with a sense or antisense oligonucleotide to the PKC isotypes that modulate the activity of the cystic fibrosis transmembrane conductance regulator [CFTR (PKC-epsilon)] or of the Na/K/2Cl (NKCC1) cotransporter (PKC-delta). Expression of NKCC1 and CFTR mRNAs and proteins was independent of antisense oligonucleotide treatment. Transport function was measured in cell monolayers grown on a plastic surface or on filter inserts. With both culture methods, the antisense oligonucleotide to PKC-epsilon decreased the amount of PKC-epsilon and reduced cAMP-dependent activation of CFTR but not alpha(1)-adrenergic activation of NKCC1. The antisense oligonucleotide to PKC-delta did not affect CFTR function but did block alpha(1)-adrenergic activation of NKCC1 and reduce PKC-delta mass. These results provide the first evidence for mRNA and protein expression of NKCC1 in Calu-3 cells and establish the differential regulation of CFTR and NKCC1 function by specific PKC isotypes at a site distal to mRNA expression and translation in airway epithelial cells.  相似文献   

15.
During epithelial tumor progression, the loss of E-cadherin expression and inappropriate expression of mesenchymal cadherins coincide with increased invasiveness. Reexpression experiments have established E-cadherin as an invasion suppressor. However, the mechanism by which E-cadherin suppresses invasiveness and the role of mesenchymal cadherins are poorly understood. We show that both p120 catenin and mesenchymal cadherins are required for the invasiveness of E-cadherin-deficient cells. p120 binding promotes the up-regulation of mesenchymal cadherins and the activation of Rac1, which are essential for cell migration and invasiveness. p120 also promotes invasiveness by inhibiting RhoA activity, independently of cadherin association. Furthermore, association of endogenous p120 with E-cadherin is required for E-cadherin-mediated suppression of invasiveness and is accompanied by a reduction in mesenchymal cadherin levels. The data indicate that p120 acts as a rheostat, promoting a sessile cellular phenotype when associated with E-cadherin or a motile phenotype when associated with mesenchymal cadherins.  相似文献   

16.
17.
Summary Human E-cadherin is a homophilic cell adhesion molecule and its expression is well preserved in normal human hepatocytes; a decrease in its expression has been observed in poorly differentiated hepatocellular carcinoma cells. We examined the alteration of E-cadherin and catenin expressions caused by differentiation inducers in human hepatocellular carcinoma cells. Hepatocellular carcinoma cell lines, HCC-T and HCC-M, were cultured with all-trans retinoic acid (ATRA), dexamethasone (DEX), sodium butyrate, and interferon-α. E-cadherin expression was only up-regulated by butyrate and interferon-α (IFN-α) in both cell lines, studied by means of fluorescence immunostaining and flow cytometry. The localization of E-cadherin staining was shown at their cell membrane. According to the increase in E-cadherin expression, β-catenin expression appeared at the cell membrane of both cell lines when treated with butyrate and IFN-α. Such an appearance was not observed when cells were treated with ATRA and DEX. Western blotting showed that α-and γ-catenin expression was not changed, while only the expression of β-catenin increased. β-Catenin oncogenic activation as a result of amino acid substitutions or interstitial deletions within or including parts of exon 3, which has been demonstrated recently, was not detected in these cell lines by direct deoxyribonucleic acid sequencing. These results suggest that the expression and interaction between E-cadherin and wild-type β-catenin are potentially modulated by butyrate and IFN-α, and that these two agents are potent inhibitors of hepatocellular carcinoma cell invasion and metastasis.  相似文献   

18.
The protein kinase C (PKC) is a family of serine/threonine kinases that are key regulatory enzymes involved in growth, differentiation, cytoskeletal reorganization, tumor promotion, and migration. We investigated the functional involvement of PKC isotypes and of E-cadherin in the regulation of the locomotion of six human colon-adenocarcinoma cell lines. The different levels of the PKC alpha and the E-cadherin expression have predictable implications in the spontaneous locomotory activity. With the use of PKC alpha--specific inhibitors (safingol, Go6976) as well as the PKC delta--specific inhibitor rottlerin, we showed that only PKC alpha plays a major role in the regulation of tumor cell migration. The results were verified by knocking out the translation of PKC isozymes with the use of an antisense oligonucleotide strategy. After stimulation with phorbol ester we observed a translocation and a colocalization of the activated PKC alpha at the plasma membrane to the surrounding extracellular matrix. Furthermore, we investigated the functional involvement of E-cadherin in the locomotion with the use of a blocking antibody. A high level of PKC alpha expression together with a low E-cadherin expression was strongly related to a high migratory activity of the colon carcinoma cells. This correlation was independent of the differentiation grade of the tumor cell lines.  相似文献   

19.
20.
Smad4 is a tumour suppressor gene frequently deleted in pancreatic cancer. To investigate the roles of Smad4 deficiency in invasive and matastatic capabilities of pancreatic cancer, we examined the effects of Smad4 deficiency on regulation of the invasion suppressor E-cadherin in pancreatic cancer cell line PANC-1. TGF-beta decreased expression of E-cadherin and beta-catenin proteins at the plasma membrane, increased Snail and Slug mRNA expression, and induced fibroblastoid morphology in PANC-1 cells. These effects of TGF-beta were abrogated in Smad4-knocked-down PANC-1 cells. We also found that TGF-beta-induced down-regulation of E-cadherin expression was partially inhibited in Snail- and Slug-knocked-down PANC-1 cells. Thus, Smad4 mediates down-regulation of E-cadherin induced by TGF-beta in PANC-1 cells, at least in part, through Snail and Slug induction. These results suggest that Smad4 deficiency observed in invasive and metastatic pancreatic cancer might not be linked to the loss of E-cadherin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号