首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的:探讨降钙素基因相关肽(CGRP)对臭氧(O3)应激后人支气管上皮细胞(HBECs)中E-钙粘素(E-cd)表达的影响及机制。方法:采用RT-PCR检测E-cd mRNA的表达,免疫细胞化学染色法检测E-cd蛋白的表达。结果:CGRP呈剂量依赖性增加正常以及O3应激后HBECs胞膜上E-cd的表达,而对胞浆内E-cd的表达无明显影响;CGRP对HBECs胞膜上E-cd表达的上调作用可分别被H-89(PKA抑制剂)、H-7(PKC抑制剂)及W-7(CaM抑制剂)部分逆转。结论:CGRP可剂量依赖性增加正常和O3应激后HBECs胞膜E-cd的表达,而对胞浆内E-cd的表达无影响。  相似文献   

2.
Abstract: The rod photoreceptors of teleost retinas elongate in the light. To characterize the role of protein kinases in elongation, pharmacological studies were carried out with rod fragments consisting of the motile inner segment and photosensory outer segment (RIS-ROS). Isolated RIS-ROS were cultured in the presence of membrane-permeant inhibitors that exhibit selective activity toward specific serine/threonine protein kinases. We report that three distinct classes of protein kinase inhibitors stimulated elongation in darkness: (1) cyclic AMP-dependent protein kinase (PKA)-selective inhibitors (H-89 and KT5720), (2) a protein kinase C (PKC)-selective inhibitor (GF 109203X) that affects most PKC isoforms, and (3) a kinase inhibitor (H-85) that does not affect PKC and PKA in vitro. Other kinase inhibitors tested neither stimulated elongation in darkness nor inhibited light-induced elongation; these include the myosin light chain kinase inhibitors ML-7 and ML-9, the calcium-calmodulin kinase II inhibitor KN-62, and inhibitors or activators of diacylglycerol-dependent PKCs (sphingosine, calphostin C, chelerythrine, and phorbol esters). The myosin light chain kinase inhibitors as well as the PKA and PKC inhibitors H-89 and GF 109203X all enhanced light-induced elongation. These observations suggest that light-induced RIS-ROS elongation is inhibited by both PKA and an unidentified kinase or kinases, possibly a diacylglycerol-independent form of PKC.  相似文献   

3.
UV-induced signal transduction may be involved in tumor promotion and induction of apoptosis. The role of protein kinase C (PKC) in UVB-induced signal transduction is not well understood. This study showed that UVB markedly induced translocation of membrane-associated PKCepsilon and PKCdelta, but not PKCalpha, from cytosol to membrane. Dominant negative mutant (DNM) PKCepsilon or PKCdelta inhibited UVB-induced translocation of PKCepsilon and PKCdelta, respectively. UVB-induced activation of extracellular signal-regulated protein kinases (Erks) and c-Jun NH2-terminal kinases (JNKs) was strongly inhibited by DNM PKCepsilon and PKCdelta, whereas the DNM of PKCalpha was less effective on the UVB-induced phosphorylation of Erks and JNKs. Among the PKC inhibitors used only rottlerin, a selective inhibitor of PKCdelta, markedly inhibited the UVB-induced activation of Erks and JNKs, but not p38 kinases. Safingol, a selective inhibitor for PKCalpha, did not show any inhibitory effect on UVB-induced mitogen-activated protein kinase activation. GF109203X is a stronger inhibitor of classical PKC than novel PKC. Lower concentrations of GF109203X (<10 microM) had no effect on UVB-induced activation of Erks or JNKs. However, at higher concentrations (over 20 microM), GF109203X inhibited UVB-induced activation of JNKs, Erks, and even p38 kinases. Meanwhile, rottlerin and GF109203X markedly inhibited UVB-induced apoptosis of JB6 cells, whereas safingol had little inhibitory effect. DNM-Erk2 cells and PD98059, a selective inhibitor for mitogen-activated protein kinase/extracellular signal-regulated kinase 1 that directly activates Erks, inhibited UVB-induced apoptosis. DNM-JNK1 cells also blocked UVB-induced apoptosis, whereas SB202190, a specific inhibitor for p38 kinases, did not produce the inhibitory effect. These data demonstrate that PKCdelta and PKCepsilon, but not PKCalpha, mediate UVB-induced signal transduction and apoptosis in JB6 cells through activation of Erks and JNKs.  相似文献   

4.
To understand how vascular endothelial growth factor (VEGF) production is activated in malignant glioma cells, we employed protein tyrosine kinase (PTK) and protein kinase C (PKC) inhibitors to evaluate the extent to which these protein kinases were involved in signal transduction leading to VEGF production. PTK inhibitors blocked glioma proliferation and epidermal growth factor (EGF)-induced VEGF secretion, while H-7, a PKC inhibitor, inhibited both EGF-induced and baseline VEGF secretion. Phorbol 12-myristate 13-acetate (PMA), a non-specific activator of PKC, induced VEGF secretion by glioma cells, which was enhanced by calcium ionophore A23187, but completely blocked after prolonged treatment of cells with 1 microM PMA, by presumably depleting PKC. All inhibitors (genistein, AG18, AG213, H-7, prolonged PMA treatment) which inhibited EGF-induced VEGF secretion in glioma cells also inhibited cell proliferation at similar concentrations. However, PKC inhibition only blocked 50% of the VEGF secretion induced by growth factors (EGF, platelet-derived growth factor-BB, or basic fibroblast growth factor). This reserve capacity could be ascribed to a PKC-independent effect, or to PKC isoenzymes not down-regulated by PMA. These findings extend our previous assertion that VEGF secretion is tightly coupled with proliferation by suggesting that activation of convergent growth factor signaling pathways will lead to increased glioma VEGF secretion. Understanding of signal transduction of growth factor-induced VEGF secretion should provide a rational basis for the development of novel strategies for therapy.  相似文献   

5.
The role of protein kinase C (PKC) in the regulation of ornithine decarboxylase (ODC) activity during interleukin-2 (IL-2)-dependent cell growth was investigated. A large biphasic increase in the activity of ODC was observed after treatment of IL-2-deprived CTLL-2 cells with recombinant human IL-2 (rec IL-2). The PKC activators phorbol 12-myristate 13-acetate (PMA) and 4 beta-phorbol 12,13-didecanoate (4 beta-PDD), but not the inactive analog 4 alpha-PDD, induced ODC activity in exponentially growing cultures. Unlike IL-2, however, phorbol esters were poor inducers of IL-2-depleted cultures. H-7, a potent inhibitor of PKC and cyclic nucleotide-dependent protein kinases (CN-PK), suppressed the IL-2-induced ODC activity, while HA1004, a more potent inhibitor of CN-PK than of PKC, had opposite effects depending on its concentration. The results suggest that activation of PKC is involved in but is not the sole mechanism for the induction of ODC by rec IL-2. At concentrations which suppressed the induction of ODC activity by IL-2, H-7 inhibited DNA synthesis and HA1004 did not.  相似文献   

6.
Prolactin (PRL) activated protein kinase C (PKC) in a dose dependent manner in rat aortic smooth muscle. Aortic strips incubated with sub-nanomolar concentrations of ovine PRL for 25 min. at 37 degrees C showed a significant stimulation of PKC activity in both cytosolic and particulate fractions. This activation could be blocked using either anti-PRL antibodies or 1-(5- isoquinolinesulfonyl)-2-methylpiperazine (H-7), a PKC inhibitor. The results further support the role of PKC in the signal transduction pathway for PRL action and suggest that this activation may be involved in vascular smooth muscle function.  相似文献   

7.
Guan CX  Cui YR  Zhang M  Bai HB  Khunkhun R  Fang X 《Peptides》2007,28(9):1667-1673
Vasoactive intestinal peptide (VIP), a non-adrenergic, non-cholinergic neuromediator, plays an important role in maintaining the bronchial tone of the airway and has anti-inflammatory properties. Recently, we reported that VIP enhances wound repair in human bronchial epithelial cells (HBEC). In the present study, we have identified the intracellular signaling molecules that are involved in VIP-mediated wound healing in HBEC. The effects of VIP on wound repair of HBEC were partially blocked by H-7 (a protein kinase C (PKC) inhibitor), W-7 (a calmodulin inhibitor), H-89 (a protein kinase A (PKA) inhibitor), and PD98059 (a specific extracellular signal-regulated kinase (ERK) inhibitor). VIP-induced chemotactic migration was inhibited in the presence of W-7, H-89, PD98059 or H-7. H-7, W-7, and H-89 were also found to decrease VIP-induced expression of Ki67 as well as the proliferation index in HBEC. Furthermore, H-7, W-7, H-89, and PD98059 inhibited the expression of E-cd protein and mRNA induced by VIP. These results suggest that intracellular signaling molecules such as PKA, PKC, ERK, and calmodulin play important role in VIP-mediated wound healing of HBEC.  相似文献   

8.
The cellular mechanism of glucagon gene expression in intact rat islets and their synthesis and release of glucagon were investigated. Arginine significantly increased the amounts of preproglucagon mRNA and glucagon in the islets and glucagon release. H-7, a specific inhibitor of protein kinase C (PKC), significantly inhibited these effects of arginine. However, H-8, a potent inhibitor of cyclic nucleotide-dependent protein kinases, did not affect the arginine-induced biosynthesis of glucagon or glucagon release. These results suggest that the regulation of glucagon gene expression by arginine is mediated by PKC, not by cyclic nucleotide-dependent protein kinases.  相似文献   

9.
Recently published reports suggest that the activation of protein kinase C (PKC) plays an important role in the activation pathway of many cell types. In this study, we examined the role of PKC in human T-cell proliferation, IL-2 production, and IL-2R expression, when cultured with the mitogen PHA, the PKC inhibitor H-7, and H-7 control HA1004. H-7 inhibited the PHA-stimulated [3H]thymidine uptake, IL-2 production, and IL-2R expression in a dose-related manner. Further, we found H-7 inhibited T-cell proliferation, IL-2 production, IL-2 mRNA from PHA plus PMA-stimulated cultures. We also found that H-7 inhibited the early-stage activation of PHA-stimulated cells. The presence of exogenous purified human IL-2 or rIL-4 partly reversed the immunosuppression caused by H-7. In contrast, HA1004 had no effect on cell proliferation, IL-2 production, or IL-2R expression. Our results demonstrate that PKC activation is one major pathway through which T-cells become activated.  相似文献   

10.
Recent evidence has demonstrated a protein kinase C (PKC)-dependent step in cytotoxic T lymphocyte activation. Here, we examined the influence of PKC in the lytic response of human NK cells to K562, an NK-sensitive tumor target cell. We used the known protein kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7) and HA1004. H-7 caused a dose-related inhibition of NK cell-mediated cytolysis (CMC) when the inhibitor was present throughout the course of the 3-h chromium release assay. The 50% inhibitory concentration for H-7 was 7 microM. In contrast, HA1004, which exerts a greater inhibitory effect on cyclic nucleotide-dependent protein kinases than PKC, had no effect on NK-CMC. The suppression of NK-CMC by H-7 was not due to inhibition of binding of the effector cells to target cells and could be reversed by the addition of PMA. H-7 was most effective in abrogating NK-CMC when added to the assay within the first 30 min and treatment of the effector and target cells with H-7 resulted in no loss of NK-CMC. Because nearly 50% of the normal NK lytic activity had taken place by 30 min, this suggested that H-7 inhibited an early event. H-7 exerted a dose-related suppression of antibody-dependent cell-mediated cytotoxicity (ADCC) suggesting that NK-CMC and ADCC share the utilization of PKC, however, HA1004 did not inhibit ADCC. Treating NK cells with IL-2 or IFN-beta did not overcome the inhibition of NK-CMC by H-7. In this study, we have thus demonstrated the presence of a PKC-dependent step in NK-CMC and ADCC.  相似文献   

11.
Hyaluronan accumulation in the retroorbital connective tissue is one of the pathological features of Graves' ophthalmopathy. Interleukin-1beta (IL-1beta) is known to stimulate hyaluronan synthesis in orbital fibroblasts. In the present study, the intracellular signal transduction pathways involved in this stimulatory effect were investigated in cultured human retroorbital fibroblasts from patients with Graves' ophthalmopathy. IL-1beta-induced hyaluronan synthesis was significantly inhibited by pretreatment of the cells with two protein kinase C (PKC) inhibitors, chlerythrine chloride and H-7. In addition, treatment with phorbol 12-myristate 13-acetate (PMA), a direct PKC activator, also resulted in increased hyaluronan production. IL-1beta- or PMA-stimulated hyaluronan synthesis was blocked by the protein synthesis inhibitor, cycloheximide. Moreover, the intracellular Ca(2+) concentration of the orbital fibroblasts was also involved in the IL-1beta induced transduction pathway, the effect being completely inhibited by BAPTA, an internal calcium chelator. In addition, A23187, a calcium ionophore, increased hyaluronan synthesis in unstimulated cells. These results suggest that the Ca(2+)-dependent PKC signal transduction pathway plays an important role in the IL-1beta-induced hyaluronan synthesis. Moreover, IL-1beta treatment resulted in increased PKC activity and the rapid translocation of PKC betaII from the cytoplasm to the plasma membrane. These results indicate that cytosolic Ca(2+) and PKC betaII are involved in IL-1beta-induced hyaluronan synthesis in cultured orbital fibroblasts from patients with Graves' ophthalmopathy.  相似文献   

12.
We have previously demonstrated that the exposure of mouse microvascular endothelium (MME) to tumor necrosis factor-alpha (TNF) led to the increased binding of mouse mastocytoma cells (P815) to endothelial monolayers (Bereta et al., in press). In the current study we examined the possible involvement of protein kinases in TNF signal transduction in the endothelial cells. PKA does not appear to play a role in the potentiation of binding by TNF. We found that the TNF-generated signal is inhibited by H-7 and sangivamycin, but not by staurosporine. TNF did not cause translocation of PKC to the cell membrane and its effect could not be completely mimicked by PMA nor by PMA in the presence of calcium-raising agents. Thus, we concluded that the "classical" PKC pathway is not completely responsible for TNF signalling in this system. We also found that staurosporine itself strongly enhanced adhesion of tumor cells to endothelium, utilizing a mechanism distinct from that of TNF. Although the data provide evidence for the role of kinases in the effect of TNF on binding of tumor cells to MME, this role appears to be a complex one.  相似文献   

13.
Gelsolin plays an important role in the regulation of amyloid beta-protein fibrillogenesis. We report here that calcium ionophore A23187 induces the expression of cytoplasmic gelsolin (c-gelsolin), and that protein kinase C (PKC) is involved in the up-regulation of c-gelsolin. In the presence of calcium, both SH-SY5Y and HEK-293 cells upon treatment with A23187 showed an increase in c-gelsolin expression in a concentration-dependent manner. Calcium-mediated up-regulation of c-gelsolin was inhibited by cycloheximide (a general inhibitor of protein synthesis). When cells were pretreated with staurosporine (an inhibitor of a variety of protein kinases including PKC), the up-regulation of c-gelsolin induced by A23187 was inhibited. Calphostin C, an inhibitor of PKC, blocked the up-regulation of c-gelsolin induced by A23187, while inhibitors of mitogen-activated protein kinases had no effect on c-gelsolin expression. In addition, phorbol-12-myristate-13-acetate, an activator of PKC, up-regulated c-gelsolin expression. These results suggest that calcium mediates up-regulation of c-gelsolin in a PKC-dependent manner.  相似文献   

14.
15.
The intracellular signal transduction mechanism leading to desmosome formation in low-calcium-grown keratinocytes after addition of calcium to the medium was studied by immunofluorescence using antibodies to desmoplakins I and II (cytoplasmic desmosomal proteins) and by electron microscopy before and after addition of calcium; protein kinase C (PKC) activators 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBu), and 1,2-dioctanoylglycerol (DOG); calcium ionophore A23187; selective PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine; and a Ca2+/calmodulin-dependent kinase inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). In previous studies using a low-calcium-grown human epidermal squamous cell carcinoma, we have shown that an increase in extracellular Ca2+ caused a four-fold increase in PKC activity and addition of TPA (10 ng/ml) induced a transient increase in membrane-bound PKC activity in association with cell-cell contact formation. The present study showed that TPA (10 ng/ml). PDBu (10 ng/ml), and DOG (1 mg/ml) induced a rapid cell-cell contact and redistribution of desmoplakins from cytoplasm to the plasma membrane with desmosome formation within 60-120 min, which was similar, although less marked, to the effect of increased Ca2+. The TPA-induced desmosome formation was inhibited by selective PKC inhibitors, H-7 (20 microM) or staurosporine (100 nM). On the other hand, calcium ionophore A23187 induced only a temporary increase in the number of desmoplakin-containing fluorescent spots in the cytoplasm and a temporary cell-cell attachment without desmosome formation. The calcium-induced desmosome formation was partially inhibited by 20-100 microM H-7 or 100 nM staurosporine; however, it was not inhibited by W-7 at a concentration of 25 microM, at which this agent selectively inhibits calmodulin-dependent protein kinase. These results suggest that PKC activation plays an important role in desmoplakin translocation from the cytoplasm to the plasma membrane as one of the processes of calcium-induced desmosome formation.  相似文献   

16.
CD20, a B cell integral membrane protein, regulates B cell activation and is differently phosphorylated in resting and activated cells. We have previously shown that CD20 phosphorylation is increased in activated cells and in phorbol ester-treated resting cells. Phosphorylation is also altered by agents which signal B cell proliferation, such as anti-IgM and a B cell growth factor. The present study was designed to address whether protein kinase C (PKC) or other kinases used CD20 as a substrate. When purified PKC was incubated with isolated CD20, both the 35- and 37-kDa CD20 proteins were phosphorylated in vitro. Intact resting B cells were next incubated with the protein kinase inhibitors H-7, H-8, and W-7. No change in basal CD20 phosphorylation was observed in the presence of W-7 and H-8, indicating that the protein cyclic nucleotide-dependent and calmodulin-dependent kinases were not actively phosphorylating CD20. Surprisingly, the PKC inhibitor H-7 increased CD20 phosphorylation at concentrations above 25-50 microM. To assess whether PKC either activated a phosphatase or inactivated a kinase affecting CD20 phosphorylation, tryptic phosphopeptide mapping of CD20 was performed. These studies revealed that addition of phorbol 12-myristate 13-acetate increased phosphorylation of some peptides differing from those which had increased phosphorylation following addition of H-7. Furthermore, signalling through surface immunoglobulin increased phosphorylation of CD20 peptides distinct from those hyperphosphorylated following addition of phorbol 12-myristate 13-acetate. These results demonstrate that 1) CD20 has multiple phosphorylation sites, as predicted from sequence data, and 2) whereas PKC can use CD20 as substrate, at least one other unidentified kinase phosphorylates CD20 in resting cells. Our data also predict that activation of B cells via the antigen receptor (surface IgM) may activate other protein kinases in addition to PKC.  相似文献   

17.
Shemarova IV 《Tsitologiia》2006,48(2):95-113
The review summarizes current data on transduction mechanisms of stress signals by protein kinase cascades in unicellular eukaryotes. The role of sensor histidine kinases, tyrosine kinases, PKC, and cyclic nucleotid-dependent kinases are reviewed. Special attention is paid to a comparative analysis of transduction mechanisms of stress signals in vertebrates and unicellular eukaryotes.  相似文献   

18.
Acetylcholinesterase inhibition explains most but not all of the toxicological manifestations of exposure to the major organophosphorus insecticide chlorpyrifos (CP) and its metabolically activated form chlorpyrifos oxon (CPO); CPO is also reported to interact with muscarinic acetylcholine receptors and alter secondary messenger status. We find that CP and CPO activate extracellular signal-regulated kinases (ERK 44/42) in both wild-type (CHOK1) and human muscarinic receptor-expressing Chinese hamster ovary cells (CHO-M2). The degree of ERK 44/42 activation on treatment with 50 microM CPO for 40 minutes is 2- to 3-fold compared with control cells and is both concentration- and time-dependent. CP is at least 2-fold less potent than CPO as an activator of ERK 44/42 and the hydrolysis products 3,5,6-trichloropyridinol and diethyl phosphate are not activators. ERK 44/42 activation by CPO is insensitive to the protein kinase A inhibitor H-89, but is completely abolished by the phosphatidylinositol 3-kinase (P13-K) inhibitor wortmannin, the protein kinase C (PKC) inhibitor GF-109203X, and the mitogen-activated extracellular signal-regulated protein kinase kinase (MEK) inhibitor PD 098059. Therefore, CPO activates the ERK 44/42 signaling cascade in CHOK1 cells via a pathway dependent on P13-K, PKC, and MEK but not requiring PKA or the human M2 muscarinic receptor. In summary we find that CPO activates a mammalian signal transduction cascade involved in cell growth and differentiation. This occurs through a pathway common to growth factors and mitogens, consistent with a receptor-mediated event. However, CPO may also inhibit an enzyme involved in signal transduction. The specific target of CPO leading to the activation of ERK 44/42 and the potential effects of this activation on cell function remain to be determined.  相似文献   

19.
Four hypotheses were tested using isolated bovine oocytes. (1) Cumulus oocyte complexes (COCs) or denuded oocytes (DOs) were cultured with the protein kinase A (PKA) inhibitor, H-89, to test if meiotic arrest induced by forskolin or IBMX was due to cAMP-stimulated PKA activity or nonspecific effects of these cAMP elevators. (2) COCs were cultured with a protein kinase C (PKC) stimulator (PDDβ) or inhibitor (GF109203x) to test if PKC modulation altered oocyte maturation. (3) COCs were prestimulated for 15 min with (a) PDDβ followed by cotreatment with forskolin, or (b) with H-89 or H-7 followed by cotreatment with GF109203x, to test for interaction between the PKA and PKC signal transduction pathways. (4) H-89 was added to spontaneously maturing COCs at intervals 0–18 hr to test if H-89 interfered with the transition between meiosis I and II. The results were as follows: H-89 interfered with forskolin or IBMX arrested oocytes in a dose-response manner (IBMX ED50 = 41 μM for COCs; forskolin ED50 = 9 μM for denuded oocytes). Prestimulation with PKC induced meiotic resumption in COCs in spite of the presence of forskolin [PDDβ followed by PDDβ + forskolin: 41–47% germinal vesicle (GV) oocytes; forskolin alone: 90–95% GV], while PKC inhibition induced meiotic arrest to a similar extent as forskolin (GF109230x, 85% GV; forskolin, 67–80% GV). Additionally, pretreatment of COCs with H-89 interfered with GF109203x induced arrest (41% vs. 90% GV, respectively). Finally, H-89 interfered with the timely progression of COCs from meiosis I and II. These results indicate that the PKA and PKC pathways can modulate the maturation of bovine oocytes in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Activation of protein kinase C has been shown to be involved in the activation pathway of many cell types. Recently, a number of investigations have suggested that protein kinase C plays an essential role in T lymphocyte activation. The recent synthesis of the protein kinase inhibitors, H-7 and HA1004, have now made possible a new approach for testing the relevance of protein kinase C in T cell activation and proliferation. We now report that the antigen-induced and interleukin-2-induced proliferation of murine T cell lines can be consistently inhibited by the protein kinase C inhibitor, H-7. HA1004, a somewhat more potent inhibitor of cyclic nucleotide-dependent protein kinases, but a significantly weaker inhibitor of protein kinase C than H-7, demonstrated no consistent inhibition of these T cell responses. These results represent a further demonstration that protein kinase C plays an essential role in the activation of T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号