首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rhizobium etli and R. tropici form nitrogen-fixing nodules on Phaseolus vulgaris (common bean). In the hope that R. etli strains with additional citrate synthase genes have better carbon economies, merodiploid strains were constructed. Previously, one such construct was shown to have an increased nodulation capacity in the standard bean cultivar Negro Xamapa. In the present work, derivatives from different R. etli strains carrying the R. tropici plasmid-borne or chromosomal citrate synthase gene were constructed and tested for nodulation in bean cultivars selected for their high capacity to fix nitrogen. Nodule numbers were dependent on the strain and the cultivar used. Differences in nodule number were not reflected in plant biomass.  相似文献   

2.
de Oliveira  W.S.  Meinhardt  L.W.  Sessitsch  A.  Tsai  S.M. 《Plant and Soil》1998,204(1):107-115
Poor bean yields in the Cunha region of the Mata Atlântica ecosystem in the state of São Paulo, Brazil, are associated with low agronomic inputs, plant disease, and soil erosion. To identify sustainable farming practices that increase production and maximize biological N2 fixation (BNF), the effects of soil fertility and plant cultivar on seed yield and root nodule formation were measured under standard agronomic practices. Results from 16 sites showed that fertilizing with lime and molybdenum increased seed yields to 370% for the landrace Serro Azul. In addition to increased yields, plants grown with fertilizer had more nodules. Marked strains of Rhizobium tropici were tested under controlled environments. An indicator strain of Rhizobium containing the gusA marker gene was used. Our results verify that the indicator strain CM-255 GusA+Hup+ had a high capacity to associate with the five bean varieties tested. Fertilization with P, K, S + micronutrients and liming were essential for better nodulation by the indicator strain. Under low fertility conditions, the landrace variety Serro Azul was poorly nodulated, when associated with native strains or with the indicator strain. However, under better soil fertility conditions, nodulation of Serro Azul by the marked Rhizobium strain was increased. The commercial variety Carioca 80SH showed no increase in nodulation (nodule number).  相似文献   

3.
Abstract: In the present work, we examined the effect of salinity on growth, N fixation and carbon metabolism in the nodule cytosol and bacteroids of Phaseolus vulgaris, and measured the O2 consumption by bacteroids incubated with or without the addition of exogenous respiratory substrates. The aim was to ascertain whether the compounds that accumulate under salt stress can increase bacteroid respiration and whether this capacity changes in response to salinity in root nodules of Phaseolus vulgaris. The plants were grown in a controlled environment chamber, and 50, 100 mM or no NaCl (control) was added to the nutrient solution. Two harvests were made, at the vegetative growth period and at the beginning of the reproductive period. The enzyme activities in the nodule cytosol were reduced by the salt treatments, while in the bacteroid cytosol the enzyme activities increased at high salt concentrations at the first harvest and for ADH in all treatments. The data presented here confirm that succinate and malate are the preferred substrates for bacteroid respiration in common bean, but these bacteroids may also utilize glucose, either in control or under saline conditions. The addition of proline or lactate to the incubation medium significantly raised oxygen consumption in the bacteroids isolated from plants treated with salt.  相似文献   

4.
Tsai  S.M.  Nodari  R.O.  Moon  D.H.  Camargo  L.E.A.  Vencovsky  R.  Gepts  P. 《Plant and Soil》1998,204(1):135-145
A recently developed bean RFLP linkage map was used to identify genetic elements affecting quantitative trait loci (QTLs) in two contrasting common bean genotypes, BAT-93 and Jalo EEP558, under two levels of mineral nitrogen: low – 0.25 mM NH4NO3 and a high – 6 mM NH4NO3. QTLs affecting nodule number (NN) and response to Xanthomonas campestris bv. phaseoli, which causes common bacterial blight (CBB) were identified and mapped. Analyses of 70 F2-derived F3 families, using the F1, the two parents, and a nodulation-defective mutant (Nod-) inoculated with R. tropici UM1899 under both levels of N showed significant differences (P#60;0.0001) among the F3 families for NN.Under low N, three genomic regions influenced both traits, with seven linked markers. In three of the six regions influencing NN, higher NN was associated with the Jalo EEP-558 allele, whereas in only two regions was the BAT-93 allele associated with higher NN. One-way analysis of variance, with each marker as the independent variable and NN as the dependent variable, and interval mapping analysis identified four QTLs, which accounted for 45% of the total variation, and two additional QTLs near to yet unassigned loci. In linkage group D7, one QTL mapped to the same region as a QTL for CBB.Under high N, three additional regions were linked to NN, one where the BAT-93 allele was closely associated with CH18 (chitinase), and the others where the Jalo EEP-558 allele was associated with CHS (chalcone synthetase) and PAL-1 (phenylalanine ammonia lyase). Four regions for CBB were mapped adjacent to or in the same region as a QTL for NN. Thus, N showed dual and opposite effects on the expression of NN and CBB. Analysis of these RFLP markers revealed these hidden favorable alleles and can serve as an indirect selection tool to increase NN and resistance to CBB.  相似文献   

5.
A decline in nitrogenase activity (C2H2 reduction) of nodules of Phaseolus vulgaris L. cv. Contander was correlated with a decrease in their soluble protein including leghe-moglobin. Concomitantly, two distinct proteolytic activities against leghemoglobin with acidic and alkaline pH optima were detected. The corresponding proteases were purified about 30-fold by ammonium sulfate precipitation, gel filtration and hydroxy-apatite chromatography. Both the acidic (pH optimum 3.5) and the alkaline (pH optimum 8.0) proteases were thiol enzymes. They were characteristic of senescing nodules, whereas only an acidic serine protease was present in functional nodules.  相似文献   

6.
Uricase (urate oxidase, EC 1.7.3.3) activity and nodule-specific uricase II (nodulin-35) were detected in the nodules from a number of legume: Rhizobium symbioses ( Vigna unguiculata (L.) Walp., Phaseolus vulgaris L., and Kennedia coccinea Vent.) in the Phaseoleae, as well as in those of Robinia pseudoacacia L. which belongs to the tribe Robineae. Neither uricase activity nor nodulin-35 was detected in nodules from Lupinus angustifolius L., an amide-forming symbiosis of the tribe Genisteae. Nodules of R. pseudoacacia also showed high levels of allantoinase (EC 3.5.2.5) activity but activity of enzymes earlier in the pathway of ureide synthesis (xanthine dehydrogenase, EC 1.2.1.37; inosine monophosphate dehydrogenase, EC 1.2.1.14; and xanthosine nucleosidase, EC 3.2.2.1) could not be detected. Analysis of transport fluids (xylem, phloem and nodule exudates) from R. pseudoacacia found that asparagine, and, to a lesser extent, glutamine were the major translocated nitrogenous solutes. Ureides accounted for, at most, 2.6% of the N in transport fluids (tracheal xylem sap) and in nodule exudate, 0.1%. In common with nodules of the ureide-forming symbioses, those of R. pseudoacacia contained a high proportion of uninfected interstitial cells (53.7 ± 2.3%) in the central N2-fixing tissue whereas in L. angustifolius only 2.5 ± 0.4% of cells in this tissue were uninfected. These data have been interpreted to indicate that expression of nodule-specific uricase is related to the differentiation of uninfected interstitial cells in nodules and not to the synthesis of ureides.  相似文献   

7.
Nine cultivars of common bean were grown in the presence of a natural microflora without exogenous rhizobial inoculation. Nodules were harvested 30 days post planting (early flowering stage) and the presence of trehalose determined. Amounts present varied according to cultivar and were between 0.20 and 1.63 mg g−1 nodule dry weight. Rhizobial strains were isolated from the nodules of three selected cultivars (Canario 101, Flor de Mayo Bajio and Flor de Mayo 38). Trehalose levels in nodules produced after either mixed strain reinfection, or after axenic homologous reinfection or after axenic cross‐reinfection could be manipulated by applying drought stress. Mixed reinfection nodules from stressed plants accumulated between two and six times the trehalose concentration found in non‐stressed control plants. After axenic cross‐reinfection up to 48‐fold increases in nodule trehalose content were recorded during drought stress. Those cultivars exhibiting high nodule trehalose levels and/or a high degree of trehalose stimulation in response to drought stress also exhibited a high leaf relative water content and were also the most drought resistant. During drought stress nodule trehalase levels rose only slightly.  相似文献   

8.
A transposon-induced mutant (T8-1) of Bradyrhizobium japonicum (61A76) was unable to develop into the nitrogen-fixing endosymbiotic form, the bacteroid. Comparison between this mutant and T5-95, an ineffective (non-nitrogen fixing, Fix-) mutant, confirmed that the process of bacteroid development is a distinct phase of differentiation of the endosymbiont and is independent of nitrogen fixation activity. The T8-1 mutant was able to induce normal-size nodules which differentiated two plant cell types and contained numerous infection threads. However, the infected cells were devoid of bacteroids. Electron microscopy revealed that the ends of the infection threads were broken down in a normal manner once the thread had penetrated the cells, but the mutant was not internalized by endocytosis. The lack of peribacteroid membrane (PBM) in nodules induced by this mutant was correlated with a reduced level of expression of plant genes coding for PBM nodulins. These genes were expressed in the T5-95 mutant, showing that the low expression in T8-1 was not due to the lack of nitrogen fixation. One of the PBM nodulins, nodulin-26, was found at normal levels in the nodules which lack PBM, suggesting that there are at least two developmental stages in PBM biosynthesis. These data suggest that a coordination of plant and Rhizobium gene expression is required for the release and internalization of bacteria into the PBM compartments of infected cells of nodules.author for correspondence  相似文献   

9.
Summary Goat's rue (Galega orientalis) is a potential perennial forage legume for northern temperate acid soils. Greenhouse experiments were performed to compare symbiotically nitrogen fixing goat's rue with plants receiving mineral nitrogen in five different acid soils. Soil acidity had the same effect on yields of symbiotically grown plants as on plants receiving mineral nitrogen, suggesting that the acid sensitivity of the symbiosis was not limiting plant growth, even under very acidic conditions. The survival of an antibiotic resistant Rhizobium (Galega) strain in acid soil and freezing conditions was also studied. The survival of the bacteria was not affected at 15°C, when the pH of the soil (measured in 0.01M CaCl2) was 5.2 or 4.9. In pH 3.4, and after freezing to –5°C, the population density decreased from 3×108 to 1×105/g in a few weeks. It is concluded that goat's rue, its symbiotic nitrogen fixation and R. (Galega) are tolerant of moderately acid agricultural soils, but that harsh winters may reduce bacterial numbers in the soil.  相似文献   

10.
Abstract: The aim of the present work was to determine the effect of abiotic stress, such as nitrogen (N) deficiency, on phenol and oxidative metabolism. In addition, we analyzed whether the response of the two metabolic processes is a good bioindicator of N deficiency in French bean plants. The N was applied to the nutrient solution in the form of NH4NO3 at 1.35 mM (N1), 2.7 mM (N2) and 5.4 mM (N3), this latter dosage being considered optimal. The results indicated that application of 1.35 and 2.70 mM of N can be defined as suboptimal or deficient, as it depressed foliar biomass of the French bean plants in our experiment. In addition, abiotic stress from the application of these N dosages stimulated the enzymes PPO, POD and CAT, and inhibited PAL and SOD activities, resulting in the lowest foliar accumulation of phenolic compounds and H2O2.  相似文献   

11.
We have analyzed the ability of single site insertion mutants of Rhizobium meliloti 1021 defective in various components of a high-affinity iron transport system to produce nodules, fix nitogen and promote plant growth. Our results indicate that a high-affinity iron transport system may significantly increase the ability of the differentiated form of the bacterium to fix nitrogen and induce an increase in plant growth.Abbreviations EDDA ethylenediamine-N,N-bis(2-hydroxyphenylacetic acid) - CAS chrome azurol S  相似文献   

12.
Soil bacteria (rhizobia) of the genus Bradyrhizobium form symbiotic relationships with peanut root cells and fix atmospheric nitrogen by converting it to nitrogenous compounds. Inoculation of peanut with rhizobia can enhance the plant’s ability to fix nitrogen from the air and thereby reduce the requirement for nitrogen fertiliser. We evaluated three Bradyrhizobium sp. strains for effect on root nodulation and on pod yield of peanut in Argentina soils, using laboratory and field experiments. Of these, strain C‐145 was the most effective in laboratory studies. In‐furrow inoculation with this strain produced increased nodule number, relative to seed inoculation. However, pod yield was not increased significantly by either type of inoculation. In view of the inconsistent response of peanut to inoculation, we examined the effect of indigenous strains of bradyrhizobia. The high degree of nodulation and nitrogen fixation produced by indigenous rhizobia were sufficient for maximal yield under the field and inoculation conditions used in this study. The data are important for future investigation of alternative inoculant strains and conditions for improving peanut production.  相似文献   

13.
Common bean genotypes BAT477, COCOT, DOR364, Flamingo, and NAG310 were inoculated with Rhizobium tropici CIAT899 and grown under phosphorus deficiency. This treatment induced a significant decrease in shoot and nodule growth that varied among genotypes from 35% to 57% and from 45% to 61%, respectively, whereas root biomass was less affected. Phosphorus deficiency affected differently the genotypes for nodule number and size, and the responses of nodulated-root O2 uptake (Conr) to raising rhizospheric PO2. From the later data, nodule conductance could be computed by dividing the slope of the regression of Conr as a function of external pO2 by nodule surface area. It is concluded that differences in nodule conductance are related to genotypic tolerance to P deficiency.  相似文献   

14.
SO2 inhibited the light-induced increase of extractable adenosine 5′-phosphosulfate sulfotransferase in greening primary leaves of bean seedlings (Phaseolus vulgaris L. cv. Saxa (Radio) Stamm Vatter). In green primary leaves containing appreciable extractable adenosine 5′-phosphosulfate sulfotransferase activity, SO2 treatment for 20 h decreased the activity of the enzyme to between 10 and 20% of the initial level. After removal of SO2 from the air, the extractable adenosine 5′-phosphosulfate sulfotransferase activity increased after a lag, both in green and greening primary leaves, and was back to the control level after about 48 h. The sulfate concentration was increased about fourfold during SO2 treatment. An increase in sulfate sulfur accompanied by a decrease in adenosine 5′-phosphosulfate sulfotransferase was also observed when bean seedlings, after excision of the roots, were transferred to nutrient solutions containing high sulfate concentrations, suggesting that sulfate is involved in the regulation of the enzyme.  相似文献   

15.
16.
In field trials at eight sites throughout the UK the mean thermal time requirement for navy beans from sowing to harvest for a standard cultivar, Marcus, was 2069 Ontario Heat Units (OHU). Low level plastic covers increased the range of warm environments at one site and gave a mean thermal time required of 2098 OHU. Analysis of daily air temperatures from six weather stations throughout the UK over a 29 year period, showed a 14 day possible planting period on the south coast of England, but gave a high probability of crop failure in Scotland. Maps of England and Wales indicating the probability of achieving 2000 OHU were produced from 5 km grid point temperatures. Less than 2% of the land had more than a 60% chance of receiving 2000 OHU under the present climate, however this area increased to 70% with a mean temperature rise of 1.5°C. Although 2000 OHU is often used as the thermal time requirement of navy beans, these trials showed that it may be more accurate to use the higher figure of 2087 OHU from sowing to harvest, and restrict the use of 2000 OHU to the period between emergence and harvest. When the map was redrawn using 2087 OHU and current climate, no parts of England and Wales showed a reasonable chance of growing the present cultivars of navy beans.  相似文献   

17.
G. Duc  A. Messager   《Plant science》1989,60(2):207-213
Pea mutants for nodulation have been obtained by treating seeds with ethyl methane sulfonate (EMS) followed by 2 screening procedures. In one, mutants resistant to nodulation (nod), or with ineffective nodules (nod+, fix) were obtained, whilst in the other 4 hypernodulated mutants (nod++) with 5–10 times more nodules than cv. Frisson and expressing a character of nitrate tolerant symbiosis (nts) were discovered. All mutations are under the control of single recessive genes. (nod), (nod+, fix) and (nod++, nts) mutations result from mutation events at 6, 7 and 1 different loci respectively.

Grafting experiments showed the (nod) and (nod+, fix) phenotypes are associated with the root genotypes and that (nod++, nts) phenotype is associated with the shoot genotype.  相似文献   


18.
Summary The responses of white clover (cv NZ Grasslands Huia grown in four UK hill soil types) to additions of lime and P, to inoculation with Rhizobium and mycorrhizal fungi, and to differences in soil water status were assessed in pot and field experiments. With a deep peat soil in pots, shoot production, nodulation and N fixation by clover were increased by 160, 130 and 85% respectively following inoculation with mycorrhiza, but in the field, despite a doubling of root infection, there was no response in growth. On a brown earth soil in the field inoculation with one endophyte (Glomus mosseae L1) out of four tested depressed production of white clover shoots by 42% but enhanced that of leeks (Allium porrum) by 50%; the others were without effect. With dry peaty podzol and brown earth soils in pots, clover shoot production was highest with added P when a water holding capacity of 80% was maintained, but roots from the latter had only 2.6 compared to 68 nodules per plant from the former. Further work is required to explain poor nodulation in the brown earth soils.  相似文献   

19.
Nodulation, nitrogen (N2) fixation and xylem sap composition were examined in sand cultured plants of Bambara groundnut (Vigna subterranea L.) and Kersting's bean (Macrotyloma geocarpum L.) inoculated with Bradyrhizobium strain CB756 and supplied via the roots for a 4 week period from the third week onwards with different levels of (15N)-nitrate (0–15 mM). The separate contributions of nitrate and N2 to plant nitrogen were measured by isotope dilution. Increasing levels of nitrate inhibited nodule growth (measured as dry matter or nodule N) of both species parallel with decreased dependence on symbiotically-fixed N. Specific nodule activity (N2 fixed g nodule dry−1 d−1 of nodules) was reduced progressively with time in V. subterranea at higher (5 or 15 mM) levels of NO3, but this was not so for M. geocarpum. Root xylem bleeding sap of both species showed ureides (allantoin and allantoic acid) as predominant (>90%) solutes of nitrogen when plants were relying solely on atmospheric N. Levels of ureide and glutamine decreased and those of asparagine and nitrate in xylem increased with increasing level of applied nitrate. Relative levels of xylem ureide-N were positively correlated (R2=0.842 for M. geocarpum and 0.556 for V. subterranea), and the ratio of asparagine to glutamine in xylem exudate negatively correlated (R2=0.955 for M. geocarpum and 0.736 for V. subterranea) with plant reliance on nitrogen fixation. The data indicate that xylem sap analyses might be useful for indirect field assays of nitrogen fixation by the species and that Kersting's bean might offer some potential as a symbiosis in which N2 fixation is relatively tolerant of soil N.  相似文献   

20.
Abstract A Rhizobium meliloti mutant, CMF1 2:38, was isolated which was specifically defective in the degradation of glutamate as sole carbon and nitrogen source. Biochemical analysis of CMF1 2:38 revealed a reduction in succinic semialdehyde dehydrogenase (SSDH) activity, the third enzyme of the γ-aminobutyrate (GABA) bypass. Evidence is presented which suggests that the Tn 5-induced mutation in CMF1 2:38 exists in a regulatory gene governing the expression of both NAD and NADP-linked SSDH activity. CMF1 2:38 nodulated alfalfa plants, but was reduced in its nitrogen fixation activity and biomass accumulating ability relative to the wild-type strain. The results presented in this study indicate that the GABA bypass is a major mechanism of glutamate degradation in R. meliloti CMF1 and that glutamate catabolism via this pathway may play an important role in the symbiotic nitrogen fixation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号