首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 1,25 (OH)2 vitamin D3 on basal 45Ca uptake was examined in vascular smooth muscle cells cultured from mesenteric arteries of spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) normotensive rats. Basal uptake of 45Ca was significantly greater in myocytes of WKY than SHR at 5, 10, 30 and 60 min incubation with the isotope. Incubation with 1 ng/ml 1,25 (OH)2 vitamin D3 for 48 hr increased basal 45Ca uptake between 1-10 min in SHR and between 5-10 min in WKY. The dose-response relationship indicated that cells from both strains are equally sensitive to the calciotropic effects of 1,25 (OH)2 vitamin D3 with half-maximal stimulation occurring at approximately 0.3-0.4 ng/ml. In cells of both strains maximal stimulation of 45Ca uptake was achieved only after a 12-24 hr period of incubation with hormone and pretreatment with cycloheximide inhibited 1,25 (OH)2 vitamin D3-enhanced 45Ca uptake. Although 45Ca binding by extracellular matrix material was significantly greater in WKY than SHR, 1,25 (OH)2 vitamin D3 had no effect on the amount of matrix 45Ca binding in either strain. These results suggest that 1,25 (OH)2 vitamin D3 induces an increase in intracellular protein synthesis that results in enhanced 45Ca uptake. The similar responses of the two strains indicate that hypertensive smooth muscle is not more sensitive to 1,25 (OH)2 vitamin D3 and the Ca2+ response is a general property of vascular muscle.  相似文献   

2.
Epidermal keratinocytes are able to produce 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and induce vitamin D activity upon UVB irradiation. To find out whether this property is keratinocyte specific, we investigated this characteristic in two other cell types, namely intestinal CaCo-2 cells and the macrophage-like differentiated THP-1 cells. THP-1 macrophages and preconfluent CaCo-2 cells contain the vitamin D receptor (VDR), possess 25-hydroxylase (CYP2R1 and CYP27A1) and 1alpha-hydroxylase (CYP27B1) activity, and survive the low UVB doses essential for vitamin D3 photoproduction. Upon irradiation, 24-hydroxylase (CYP24) mRNA is induced in both cell types pretreated with the sterol Delta7-reductase inhibitor BM15766 whereby the 7-dehydrocholesterol (7-DHC) content was increased. Transfection studies in CaCo-2 cells with a vitamin D response element-containing construct revealed the involvement of the VDR in this UVB-dependent CYP24 induction. The CYP24 inducing activity in BM15766-pretreated UVB-irradiated CaCo-2 cells and THP-1 macrophages was identified as 1,25(OH)2D3 by combined high-performance liquid chromatography radioimmunoassay. Addition of vitamin D binding protein to the CaCo-2 cells attenuated UVB-induced CYP24 induction suggesting the possibility of a paracrine or autocrine role for the photoproduced 1,25(OH)2D3. In conclusion, preconfluent CaCo-2 cells and THP-1 macrophages are able to induce vitamin D activity upon UVB irradiation and hence combine all parts of the vitamin D photoendocrine system, a characteristic which is therefore not keratinocyte specific.  相似文献   

3.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) increases synthesis of heat shock proteins in monocytes and U937 cells and protects these cells from thermal injury. We examined whether 1,25-(OH)2D3 would also modulate the susceptibility of U937 cells to H2O2-induced oxidative stress. Cell viability was assessed by trypan blue exclusion and [3H]thymidine incorporation into DNA. Prior incubation for 24 h with 1,25-(OH)2D3 (25 pM or higher) unexpectedly increased H2O2 toxicity. Since cellular Ca2+ may be a mediator of cell injury we investigated effects of altering extracellular Ca2+ ([Ca2+]e) on 1,25-(OH)2D3-enhanced H2O2 toxicity as well as effects of 1,25-(OH)2D3 and H2O2 on cytosolic free Ca2+ concentration ([Ca2+]f). Basal [Ca2+]f in medium containing 1.5 mM Ca as determined by fura-2 fluorescence was higher in 1,25-(OH)2D3-pretreated cells than control cells (137 versus 112 nM, P less than 0.005). H2O2 induced a rapid increase in [Ca2+]f (to greater than 300 nM) in both 1,25-(OH)2D3-treated and control cells, which was prevented by a reduction in [Ca2+]e to less than basal [Ca2+]f. The 1,25(OH)2D3-induced increase in H2O2 toxicity was also prevented by preincubation with 1,25-(OH)2D3 in Ca2+-free medium or by exposing the cells to H2O2 in the presence of EGTA. Preexposure of cells to 45 degrees C for 20 min, 4 h earlier, partially prevented the toxic effects of H2O2 particularly in 1,25-(OH)2D3-treated cells, even in the presence of physiological levels of [Ca2+]e. Thus 1,25-(OH)2D3 potentiates H2O2-induced injury probably by increasing cellular Ca2+ stores. The 1,25-(OH)2D3-induced amplification of the heat shock response likely represents a mechanism for counteracting the Ca2+-associated enhanced susceptibility to oxidative injury due to 1,25-(OH)2D3.  相似文献   

4.
The steroid hormone 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) regulates cell proliferation and differentiation. Intracellular calcium (Cai) concentrations play a crucial role in these events. From our previous studies, we have demonstrated a calcium receptor (CaR) in keratinocytes which appears to regulate the initial release of Cai from intracellular stores in response to extracellular calcium (Cao) and so is likely to participate in the differentiation process. In this study, we determined whether the ability of 1,25(OH)2D3 to enhance Ca++ -induced differentiation was mediated at least in part through changes in the CaR. Keratinocytes were grown in keratinocyte growth medium (KGM) with 0.03 mM, 0.1 mM, or 1.2 mM Ca and treated with 10(-8) M 1,25(OH)2D3 till harvest after 5, 7, 14, and 21 days. CaR mRNA levels were quantitated by polymerase chain reaction. The results were compared to the ability of 1,25(OH)2D3 to enhance calcium-stimulated increases in Cai. In cells grown in 0.03 mM Ca, the CaR mRNA levels decreased with time. 1,25(OH)2D3 stimulated the levels at 5 days and prevented the falloff over the subsequent 16 days. On the other hand, in cells grown in 0.1 or 1.2 mM Ca, the message levels remained high, and 1,25(OH)2D3 had no further effect. To study the functional relationship, we harvested cells after 5 and 7 days in culture following a 24 h treatment with 1,25(OH)2D3 or vehicle to measure the Cai response to 2 mM Cao. The preconfluent cells grown in 0.03 mM Ca showed a nearly twofold increase in the Cai response to Cao when pretreated with 1,25(OH)2D3, whereas the confluent cells and those grown in 1.2 mM Ca showed no enhancement by 1,25(OH)2D3. Studies with 45Ca influx into keratinocytes revealed that 1,25(OH)2D3 enhanced the influx in preconfluent and confluent cells when grown in KGM containing 0.03 mM Ca but not in cells grown in 1.2 mM calcium. We conclude that 1,25(OH)2D3 maintains the CaR mRNA levels in cells grown in 0.03 mM Ca, thus maintaining their responsiveness to Cao and so ensuring their ability to differentiate in response to the calcium signal.  相似文献   

5.
6.
The active form of Vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], has potent antiproliferative actions on various normal and malignant cells. Calcemic effects, however, hamper therapeutic application of 1,25-(OH)(2)D(3) in hyperproliferative diseases. Two 14-epi-analogs of 1,25-(OH)(2)D(3) namely 19-nor-14-epi-23-yne-1,25-(OH)(2)D(3) (TX522) and 19-nor-14,20-bisepi-23-yne-1,25-(OH)(2)D(3) (TX527), display reduced calcemic effects coupled to an (at least 10-fold) increased antiproliferative potency when compared with 1,25-(OH)(2)D(3). Altered cofactor recruitment by the Vitamin D receptor (VDR) might underlie the superagonism of these 14-epi-analogs. Therefore, this study aims to evaluate their effects at the level of VDR-coactivator interactions. Mammalian two-hybrid assays with VDR and the coactivators TIF2 and DRIP205 showed the 14-epi-analogs to be more potent inducers of VDR-coactivator interactions than 1,25-(OH)(2)D(3). TX522 and TX527 require 30- and 40-fold lower doses to obtain the VDR-DRIP205 interaction induced by 1,25-(OH)(2)D(3) at 10(-8)M. Evaluation of additional 1,25-(OH)(2)D(3)-analogs and their impact on VDR-coactivator interactions revealed a strong correlation between the antiproliferative potency of an analog and its ability to induce VDR-coactivator interactions. In conclusion, these data show that altered coactivator binding by the VDR is one possible explanation for the superagonistic action of the two 14-epi-analogs TX522 and TX527.  相似文献   

7.
We investigated the effects of 1,25-dihydroxyvitamin D(3) [25(OH)(2)D(3)] on tissue plasminogen activator (tPA) secretion from primary cultures of rat heart microvascular cells. After an initial 5-day culture period, cells were treated for 24 h with 1,25(OH)(2)D(3) and several of its analogs. The results showed that 1,25(OH)(2)D(3) induced tPA secretion at 10(-10) to 10(-16) M. A less calcemic analog, Ro-25-8272, and an analog that binds the vitamin D receptor but is ineffective at perturbing Ca(2+) channels, Ro-24-5531, were approximately 10% as active as 1,25(OH)(2)D(3). An analog that binds the vitamin D receptor poorly but is an effective Ca(2+) channel agonist, Ro-24-2287, required approximately 10(-13) M to induce tPA secretion. Combinations of Ro-24-5531 and Ro-24-2287 were approximately as potent as 1,25(OH)(2)D(3). Treatment of the cells with BAY K 8644 or thapsigargin also increased tPA secretion, suggesting that increased cytosolic calcium concentration ([Ca(2+)]) induces tPA secretion. The results suggested that the sensitivity of the tPA secretory response of microvascular cells to 1,25(OH)(2)D(3) was due in part to generation of a vitamin D-depleted state in vitro and in part to synergistic effects of 1,25(OH)(2)D(3) on two different induction pathways of tPA release.  相似文献   

8.
The acute effects of 1,25-Dihydroxy-vitamin D3 [1,25(OH)2D3] on the concentration of cytoplasmic ionized calcium [Ca2+] of cultured rat mesangial cells were studied at the single cell level by microspectrofluorometry of fura-2-loaded cells. Addition of 1,25(OH)2D3 produced an immediate increase of [Ca2]+. This rise in [Ca2+] was sustained and similar to that caused by the Ca2+ channel agonist BAY K 8644. Comparable changes were also observed in cultured human mesangial cells. The effects of the hormone (10 (-10)-10(-7) M) were dose-dependent (62% and 285%). Only 30-40% of the cells responded to stimulation with 1,25(OH)2D3. 25OHD3 also increased Ca2+ whereas 24,25(OH)2D3 and 1aOHD3 were inactive. Addition of 1 mM CoCl2 or 2-5 microM nifedipine largely blocked the effects of 1,25(OH)2D3 suggesting the involvement of Ca2+ channel activation in the rapid 1,25(OH)2D3-induced increase in mesangial cell [Ca2+]. 45Ca uptake studies are consistent with This interpretation.  相似文献   

9.
A variety of intestinal cell organelles and proteins have been proposed to mediate 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-stimulated calcium absorption. In the present study biochemical analyses were undertaken to determine the subcellular localization of 45Ca after calcium transport in vivo in ligated duodenal loops of vitamin D-deficient chicks injected with 1.3 nmol of 1,25-(OH)2D3 or vehicle 15 h prior to experimentation. Separation of Golgi, mitochondria, basal lateral membrane, and lysosome fractions in the epithelial homogenates was achieved by differential sedimentation followed by centrifugation in Percoll gradients and evaluation of appropriate marker enzyme activities. Both vitamin D-deficient and 1,25-(OH)2D3-treated chicks had the highest levels of 45Ca-specific activity in lysosomal fractions. The lysosomes were also the only organelles to exhibit a 1,25-(OH)2D3-mediated difference in calcium content, increasing to 138% of controls. Lysosomes prepared from 1,25-(OH)2D3-treated chicks also contained the greatest levels of immunoreactive calbindin-D28k (calcium-binding protein). Chloroquine, a drug known to interfere with lysosomal function, was tested and found to inhibit 1,25-(OH)2D3-stimulated intestinal calcium absorption. Neither 1,25-(OH)2D3 nor chloroquine affected [3H]2O transport. In additional experiments, microsomal membranes (105,000 X g pellets) were subjected to gradient centrifugation. The highest levels of 45Ca-specific activity and calcium-binding protein in material from 1,25-(OH)2D3-treated chicks were found in fractions denser than endoplasmic reticulum and may represent endocytic vesicles. In studies on intestinal mucosa of 1,25-(OH)2D3-treated birds fractionated after 30 min of exposure to lumenal Ca2+ or Ca2+ plus chloroquine, 45Ca was found to accumulate in lysosomes and putative endocytic vesicles, relative to controls. A mechanism involving vesicular flow is proposed for 1,25-(OH)2D3-mediated intestinal calcium transport. Endocytic internalization of Ca2+, fusion of the vesicles with lysosomes, and exocytosis at the basal lateral membrane complete the transport process.  相似文献   

10.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] plays a critical role in maintaining calcium and phosphate homeostasis and bone formation but also exhibits antiproliferative activity on many cancer cells, including prostate cancer. We have shown that the antiproliferative actions of 1,25-(OH)2D3 in the LNCaP human prostate cancer cell line are mediated in part by induction of IGF binding protein-3 (IGFBP-3). The purpose of this study was to determine the molecular mechanism involved in 1,25-(OH)2D3 regulation of IGFBP-3 expression and to identify the putative vitamin D response element (VDRE) in the IGFBP-3 promoter. We cloned approximately 6 kb of the IGFBP-3 promoter sequence and demonstrated its responsiveness to 1,25-(OH)2D3 in transactivation assays. Computer analysis identified a putative VDRE between -3296/-3282 containing the direct repeat motif GGTTCA ccg GGTGCA that is 92% identical with the rat 24-hydroxylase distal VDRE. In EMSAs, the vitamin D receptor (VDR) showed strong binding to the putative IGFBP-3 VDRE in the presence of 1,25-(OH)2D3. Supershift assays confirmed the presence of VDR in the IGFBP-3 VDRE complex. Chromatin immunoprecipitation assay demonstrated that 1,25-(OH)2D3 recruited the VDR/retinoid X receptor heterodimer to the VDRE site in the natural IGFBP-3 promoter in intact cells. In transactivation assays, the putative VDRE coupled to a heterologous simian virus 40 promoter construct was induced 2-fold by 1,25-(OH)2D3. Mutations in the VDRE resulted in a loss of inducibility confirming the critical hexameric sequence. In conclusion, we have identified a functional VDRE in the distal region of the human IGFBP-3 promoter. The induction of IGFBP-3 by 1,25-(OH)2D3 appears to be directly mediated via VDR interaction with this VDRE.  相似文献   

11.
12.
This study tested the hypothesis that 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and its previously described cardiac receptors play roles in regulating intracellular calcium homeostasis in cardiac muscle cells. This question was addressed by assessing whether 1,25-(OH)2D3 influences 45Ca2+ uptake by homogeneous cultures of adult rat ventricular cardiac muscle cells. Twenty-four h prior to the measurement of 45Ca2+ uptake, the cells were transferred to serum-free medium ([Ca2+], 1.0 mM) containing 1.0 nM 1,25(OH)2D3 or vehicle. The cells were then incubated with 45Ca2+ for periods up to 60 min at room temperature, followed by removal of excess external 45Ca2+ by washing repeatedly with La3+. Pretreating the cells with 1,25-(OH)2D3 caused 3-fold stimulation (p less than 0.005) of 45Ca2+ uptake. Stimulation of 45Ca2+ uptake required a prolonged (8-12 h) exposure to 1,25-(OH)2D3, suggesting a receptor-mediated phenomenon. Concentrations of 0.01-10 nM 1,25-(OH)2D3 yielded a dose-response curve which peaked at 1.0 nM and decreased at higher concentrations. Steroid specificity was established by the failure of 1.0 nM levels of 25-hydroxyvitamin D3, estradiol-17 beta, and progesterone to change 45Ca2+ uptake. Sucrose gradient analysis confirmed the presence of a specific 3-4 S 3H-1,25-(OH)2D3 binding component both in freshly isolated and in cultured ventricular cardiac muscle cells. The stimulatory effect of 1,25-(OH)2D3 on 45Ca2+ uptake was abolished by the concomitant incubation of the cells with cycloheximide or actinomycin D, demonstrating a requirement for protein and nucleic acid synthesis. In conclusion, these data demonstrate that 1,25-(OH)2D3 stimulates 45Ca2+ uptake in adult ventricular cardiac muscle cells by a mechanism resembling a receptor-mediated phenomenon.  相似文献   

13.
The human colon carcinoma cell line, Caco-2, is the only intestinal cell line to spontaneously differentiate in culture to a population exhibiting structural and biochemical characteristics of mature enterocytes. We conducted studies to establish the presence of the vitamin D receptor (VDR), determine changes in VDR concentration and affinity with differentiation and determine whether 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) mediates a functional response in this cell line. We found that Caco-2 cells possess a specific 1,25(OH)2D3 binding protein similar to the mammalian VDR. It has an equilibrium dissociation constant (Kd) of 0.72 nM, binds vitamin D analogues in order of their biological activities in vivo (1,25(OH)2D3 greater than 25(OH)D3 greater than 24,25(OH)2D3), sediments as a single peak on sucrose density gradients at 3.7 S, and is eluted from a DNA-cellulose column by 0.16 M KCl. The maximum number of binding sites was 2.6-fold greater in the differentiated cell (Day 15) compared to the preconfluent, undifferentiated (Day 4) cell (23 fmol/mg protein vs 56 fmol/mg protein). Cell growth was reduced 59% when exposed to 10(-7) M 1,25(OH)2D3 for 8 days. Alkaline phosphatase activity significantly increased in cultures incubated with 10(-8) M 1,25(OH)2D3 for up to 4 days when treatment was started in both undifferentiated cells (Day 5) and differentiated cells (Day 11). These findings suggest that the VDR present in undifferentiated and differentiated Caco-2 cells is functional. Caco-2 cells provide a unique in vitro model to study vitamin D-regulated functions in differentiated mammalian enterocytes.  相似文献   

14.
Vitamin D compounds added to the culture medium induce HL-60 cells to differentiate into macrophage/monocytes via a receptor mechanism. This system provides a biologically relevant assay for the study of biopotency of vitamin D analogs. Using this system, the biological activity of various fluorinated derivatives of vitamin D3 was compared with that of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). As assessed by cell morphology, nitroblue tetrazolium reduction and nonspecific esterase activity, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3) and 26,26,26,27,27,27-hexafluoro-1,24-dihydroxyvitamin D3 (26,27-F6-1,24-(OH)2D3) were about 10 times as potent as 1,25-(OH)2D3 in suppressing HL-60 cell proliferation and inducing cell differentiation. The biological activity of 26,26,26,27,27,27-hexafluoro-1-hydroxyvitamin D3 (26,27-F6-1-OH-D3) was equal to that of 1,25-(OH)2D3 in this system. 1,25-(OH)2D3 and its fluorinated analogs exerted their effects on HL-60 cells in a dose-dependent manner. HL-60 cells have a specific receptor for 1,25-(OH)2D3 with an apparent Kd of 0.25 nM, identical with that of chick intestinal receptor. While the binding affinities of 26,27-F6-1,25-(OH)2D3 and 26,27-F6-1,24-(OH)2D3 for chick intestinal receptor were lower than that of 1,25-(OH)2D3 by factors of 3 and 1.5, respectively, they were as competent as 1,25-(OH)2D3 in binding to HL-60 cell receptor. The ability of 26,27-F6-1-OH-D3 to compete for receptor protein from HL-60 cells and chick intestine was about 1/70 that of 1,25-(OH)2D3. These results indicate that trifluorination of carbons 26 and 27 of vitamin D3 can markedly enhance the effect on HL-60 cells.  相似文献   

15.
Cultured vascular smooth muscle cells (VSMC) derived from rat aorta were found to contain a specific receptor for 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. Its Kd (5.0 x 10(-11) M) and capacity (22.9 fmol/mg of cytosol protein) for 1,25-(OH)2D3, its sedimentation coefficient on a sucrose density gradient (3.2 S), its relative affinities for various vitamin D3 metabolites [1,25-(OH)2D3 greater than 25-hydroxyvitamin D3 greater than 24,25-dihydroxyvitamin D3 greater than vitamin D3] and its affinity for DNA-cellulose were similar to those reported for the 1,25-(OH)2D3 receptor in other tissues. 1,25-(OH)2D3 at concentrations of more than 10(-10) M caused dose-dependent enhancement of the proliferation of VSMC in DMEM with 10% FCS. 25-Hydroxyvitamin D3 stimulated the proliferation of VSMC only at its highest concentration tested (10(-6) M). These data show that 1,25-(OH)2D3 stimulates the proliferation of VSMC after its binding to a cytoplasmic receptor of the cells in vitro, and support the possibility that VSMC are target cells of the hormone.  相似文献   

16.

Background

Elevated serum 1,25-dihydroxyvitamin D (1,25(OH)2D) concentrations have been reported among cohorts of recurrent calcium (Ca) kidney stone-formers and implicated in the pathogenesis of hypercalciuria. Variations in Ca and vitamin D metabolism, and excretion of urinary solutes among first-time male and female Ca stone-formers in the community, however, have not been defined.

Methods

In a 4-year community-based study we measured serum Ca, phosphorus (P), 25-hydroxyvitamin D (25(OH)D), 1,25(OH)2D, 24,25-dihydroxyvitamin D (24,25(OH)2D), parathyroid hormone (PTH), and fibroblast growth factor-23 (FGF-23) concentrations in first-time Ca stone-formers and age- and gender frequency-matched controls.

Results

Serum Ca and 1,25(OH)2D were increased in Ca stone-formers compared to controls (P = 0.01 and P = 0.001). Stone-formers had a lower serum 24,25(OH)2D/25(OH)D ratio compared to controls (P = 0.008). Serum PTH and FGF-23 concentrations were similar in the groups. Urine Ca excretion was similar in the two groups (P = 0.82). In controls, positive associations between serum 25(OH)D and 24,25(OH)2D, FGF-23 and fractional phosphate excretion, and negative associations between serum Ca and PTH, and FGF-23 and 1,25(OH)2D were observed. In SF associations between FGF-23 and fractional phosphate excretion, and FGF-23 and 1,25(OH)2D, were not observed. 1,25(OH)2D concentrations associated more weakly with FGF-23 in SF compared with C (P <0.05).

Conclusions

Quantitative differences in serum Ca and 1,25(OH)2D and reductions in 24-hydroxylation of vitamin D metabolites are present in first-time SF and might contribute to first-time stone risk.  相似文献   

17.
A slowly inactivating inward calcium current was identified in the rat osteosarcoma cell line ROS 17/2.8 using a combination of ion flux and electrophysiological techniques. Voltage dependence, dihydropyridine sensitivity, divalent cation selectivity, and single channel properties identified this current as a high threshold, "L-type" calcium current. Ion flux experiments using 45Ca2+ confirmed that calcium uptake through these channel represents a major pathway for calcium entry into osteosarcoma cells. In resting cells, i.e. at negative membrane potentials, stimulation of both calcium current and rapid 45Ca2+ influx could be elicited by concentrations of 1,25-(OH)2-vitamin D3 between 0.1 and 3 nM. At these concentrations, 1,25-(OH)2-vitamin D3 shifted the threshold for activation of inward calcium current to more negative potentials. At higher concentrations (5-10 nM), inhibitory effects became predominant. These opposing effects are functionally similar to those of the dihydropyridine BAY K 8644. Other vitamin D3 metabolites (25-(OH)-D3 and 24,25-(OH)2-D3) exhibited less potent stimulatory effects and greater inhibition of calcium current than 1,25-(OH)2-D3. These results suggest that (i) vitamin D3 acts as a potent modulator of calcium channel function in osteosarcoma cells, and (ii) intracellular Ca2+-dependent signaling processes may be affected acutely by physiological concentrations of vitamin D3 metabolites.  相似文献   

18.
1,25-(OH)2 vitamin D3 (1,25-(OH)2D3) exerts antiproliferative effects via cell cycle regulation in a variety of tumor cells, including prostate. We have previously shown that in the human prostate cancer cell line LN-CaP, 1,25-(OH)2D3 mediates an increase in cyclin-dependent kinase inhibitor p27Kip1 levels, inhibition of cyclin-dependent kinase 2 (Cdk2) activity, hypophosphorylation of retinoblastoma protein, and accumulation of cells in G1. In this study, we investigated the mechanism whereby 1,25-(OH)2D3 increases p27 levels. 1,25-(OH)2D3 had no effect on p27 mRNA levels or on the regulation of a 3.5-kb fragment of the p27 promoter. The rate of p27 protein synthesis was not affected by 1,25-(OH)2D3 as measured by luciferase activity driven by the 5'- and 3'-untranslated regions of p27 that regulate p27 protein synthesis. Pulse-chase analysis of 35S-labeled p27 revealed an increased p27 protein half-life with 1,25-(OH)2D3 treatment. Because Cdk2-mediated phosphorylation of p27 at Thr187 targets p27 for Skp2-mediated degradation, we examined the phosphorylation status of p27 in 1,25-(OH)2D3-treated cells. 1,25-(OH)2D3 decreased levels of Thr187 phosphorylated p27, consistent with inhibition of Thr187 phosphorylation-dependent p27 degradation. In addition, 1,25-(OH)2D3 reduced Skp2 protein levels in LNCaP cells. Cdk2 is activated in the nucleus by Cdk-activating kinase through Thr160 phosphorylation and by cdc25A phosphatase via Thr14 and Tyr15 dephosphorylation. Interestingly, 1,25-(OH)2D3 decreased nuclear Cdk2 levels as assessed by subcellular fractionation and confocal microscopy. Inhibition of Cdk2 by 1,25-(OH)2D3 may thus involve two mechanisms: 1) reduced nuclear Cdk2 available for cyclin binding and activation and 2) impairment of cyclin E-Cdk2-dependent p27 degradation through cytoplasmic mislocalization of Cdk2. These data suggest that Cdk2 mislocalization is central to the antiproliferative effects of 1,25-(OH)2D3.  相似文献   

19.
The possible involvement of plasma calcium and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the regulation of the concentration of kidney calcium-binding protein (CaBP) was investigated. Chicks were fed diets varying in Ca2+ and P, with or without vitamin D. CaBP and 1,25(OH)2D3 were determined by competitive binding assays. A significant correlation between plasma and kidney 1,25(OH)2D3 was found, the linear regression equation of best-fit was plasma 1,25(OH)2D3 = 0.14 + 1.56 kidney 1,25(OH)2D3. In the vitamin D-fed chicks, kidney CaBP varied independently of the circulating or organ level of 1,25(OH)2D3 (P greater than 0.05), but was lower in the vitamin D-deficient than in the vitamin D-fed birds. A significant correlation was observed between kidney CaBP and plasma calcium (Cap). The regression equations were CaBP = Cap/(85.57-4.00 Cap) (R = 0.845) and CaBP = 0.0558 + 0.0404 Cap (R = 0.749), for vitamin D-treated and vitamin D-deficient chicks, respectively. The results suggest that the concentration of kidney CaBP is modulated by plasma calcium, but one or more of the vitamin D metabolites may be required for its synthesis.  相似文献   

20.
We have the evaluated the effect of vitamin D-3 and its metabolite 1,25-dihydroxyvitamin D-3 on Ca2+ accumulation by chick intestinal mitochondria. Ca2+ accumulation appears to occur in two phases: an early, transient accumulation into an Na+-labile pool followed by an ATP-dependent accumulation into an Na+-resistant pool. Ca2+ accumulation is extensive at free Ca2+ concentrations greater than 3 . 10(-6) M in the presence of ATP. Ruthenium red and dinitrophenol block Ca2+ accumulation, but atractyloside does not. Oligomycin blocks ATP-supported accumulation completely with a partial inhibition of ATP and malate-supported accumulation. Little difference could be found in mitochondrial preparations from vitamin D-deficient chicks compared to those from vitamin D-3 (or 1,25(OH)2D-3)-supplemented chicks with respect to respiratory control, oxygen consumption, efficiency of oxidative phosphorylation, affinity for Ca2+, or the rate and extent of ATP-supported Ca2+ accumulation. Intestinal cytosol stimulated Ca2+ accumulation, but this was not specific with respect to vitamin D status or tissue of origin, nor was it duplicated by chick intestinal Ca2+-binding protein. 30 ng/ml 1,25(OH)2D-3 stimulated Ca2+ accumulation directly, regardless of the presence of intestinal cytosol. Other vitamin D metabolites were less potent: 25-hydroxyvitamin D-3 greater than 24,25-dihydroxyvitamin D-3 = vitamin D-3. Since increasing the free Ca2+ concentration from 3 . 10(-6) to 1 . 10(-5) M increased Ca2+ accumulation approx. 50-fold, whereas direct stimulation by 1,25(OH)2D-3 in vitro increased Ca2+ accumulation less than 2-fold, we conclude that 1,25(OH)2D-3 influences mitochondrial accumulation of Ca2+ in vivo primarily by altering cytosol concentrations of free Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号