首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify secreted virulence factors involved in bacterial wilt disease caused by the phytopathogen Ralstonia solanacearum, we mutated tatC, a key component of the twin-arginine translocation (Tat) secretion system. The R. solanacearum tatC mutation was pleiotropic; its phenotypes included defects in cell division, nitrate utilization, polygalacturonase activity, membrane stability, and growth in plant tissue. Bioinformatic analysis of the R. solanacearum strain GMI1000 genome predicted that this pathogen secretes 70 proteins via the Tat system. The R. solanacearum tatC strain was severely attenuated in its ability to cause disease, killing just over 50% of tomato plants in a naturalistic soil soak assay where the wild-type parent killed 100% of the plants. This result suggested that elements of the Tat secretome may be novel bacterial wilt virulence factors. To identify contributors to R. solanacearum virulence, we cloned and mutated three genes whose products are predicted to be secreted by the Tat system: RSp1521, encoding a predicted AcvB-like protein, and two genes, RSc1651 and RSp1575, that were identified as upregulated in planta by an in vivo expression technology screen. The RSc1651 mutant had wild-type virulence on tomato plants. However, mutants lacking either RSp1521, which appears to be involved in acid tolerance, or RSp1575, which encodes a possible amino acid binding protein, were significantly reduced in virulence on tomato plants. Additional bacterial wilt virulence factors may be found in the Tat secretome.  相似文献   

2.
3.
Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly.Fruit ripening is a genetically programmed event that is characterized by a number of biochemical and physiological processes that alter fruit color, flavor, aroma, and texture (Brady, 1987). Extensive cell wall modifications occur during ripening and are thought to underlie processes such as fruit softening, tissue deterioration, and pathogen susceptibility. These modifications are regulated at least in part by the expression of genes that encode cell wall-modifying enzymes (Fischer and Bennett, 1991). Pectins are a major class of cell wall polysaccharides that are degraded during ripening, undergoing both solubilization and depolymerization. In tomato the majority of ripening-associated pectin degradation is attributable to the cell wall hydrolase PG. Transgenic tomato plants with altered PG gene expression indicated that PG-dependent pectin degradation is neither required nor sufficient for tomato fruit softening to occur (Sheehy et al., 1988; Smith et al., 1988; Giovannoni et al., 1989). However, data from experiments using fruit of the same transgenic lines strongly suggested that PG-mediated pectin degradation is important in the later, deteriorative stages of ripening and in pathogen susceptibility of tomato fruit (Schuch et al., 1991; Kramer et al., 1992).In melon (Cucumis melo) substantial amounts of pectin depolymerization and solubilization take place during ripening (McCollum et al., 1989; Ranwala et al., 1992; Rose et al., 1998), implicating a role for PG in ripening-associated cell wall disassembly in melons. However, melons have been reported to lack PG enzyme activity (Hobson, 1962; Lester and Dunlap, 1985; McCollum et al., 1989; Ranwala et al., 1992). The possibility exists that PG is present in melon but that it does not conform to the expected enzymic properties in terms of abundance and/or lability, a point illustrated by recent reports in apple and strawberry, which were previously reported to lack PG activity but that do in fact accumulate low amounts of protein and/or measurable activity (Nogata et al., 1993; Wu et al., 1993). In light of the unexplained discrepancy between ripening-associated pectin depolymerization and undetectable PG activity in melons, we have undertaken a study to reexamine the status of PG in melon using the rapidly ripening cv Charentais (C. melo cv Reticulatus F1 Alpha).As reported for other cultivars, Charentais melons exhibit substantial solubilization and a downshift in the molecular-mass profile of water-soluble pectins, but this is associated with the later stages of ripening, after softening is initiated (Rose et al., 1998). By utilizing a molecular approach to analyze PG in melon, we have attempted to overcome some of the potential limitations of biochemical methods, such as low abundance of protein, reliance on other cell wall components, and unknown cofactors for activity and/or lability during extraction. In doing so, we have identified and characterized a multigene family encoding putative PGs from Charentais melon, including three PG homologs that are expressed abundantly during fruit ripening. The pattern of PG gene expression correlates temporally with the depolymerization of water-soluble pectins and an increase in pectin-degrading enzyme activity. Three additional PG homologs were also identified and shown to be expressed in mature anthers and fruit-abscission zones, tissues that, similar to ripening fruit, are undergoing cell separation. The most abundant ripening-associated putative PG mRNA, MPG1, was expressed in the filamentous fungus Aspergillus oryzae. The culture filtrate from the transformed A. oryzae strain XMPG1 exhibited endo-PG activity, further supporting a role for endo-PG in ripening-associated pectin disassembly in Charentais melon fruit.  相似文献   

4.
The filamentous fungus Cochliobolus carbonum produces endo-α1,4-polygalacturonase (endoPG), exo-α1,4-polygalacturonase (exoPG), and pectin methylesterase when grown in culture on pectin. Residual activity in a pgn1 mutant (lacking endoPG) was due to exoPG activity, and the responsible protein has now been purified. After chemical deglycosylation, the molecular mass of the purified protein decreased from greater than 60 to 45 kDa. The gene that encodes exoPG, PGX1, was isolated with PCR primers based on peptide sequences from the protein. The product of PGX1, Pgx1p, has a predicted molecular mass of 48 kDa, 12 potential N-glycosylation sites, and 61% amino acid identity to an exoPG from the saprophytic fungus Aspergillus tubingensis. Strains of C. carbonum mutated in PGX1 were constructed by targeted gene disruption and by gene replacement. Growth of pgx1 mutant strains on pectin was reduced by ca. 20%, and they were still pathogenic on maize. A double pgn1/pgx1 mutant strain was constructed by crossing. The double mutant grew as well as the pgx1 single mutant on pectin and was still pathogenic despite having less than 1% of total wild-type PG activity. Double mutants retained a small amount of PG activity with the same cation-exchange retention time as Pgn1p and also pectin methylesterase and a PG activity associated with the mycelium. Continued growth of the pgn1/pgx1 mutant on pectin could be due to one or more of these residual activities.  相似文献   

5.
The bacterial wilt pathogen Ralstonia solanacearum produces three extracellular polygalacturonases (PGs): PehA, PehB, and PehC. All three PGs hydrolyze pectin's polygalacturonic acid backbone, but each releases different reaction products. PehA and PehB contribute significantly to pathogen virulence, probably by facilitating root invasion and colonization. To determine the collective contribution of PGs to virulence and saprophytic survival, we cloned, characterized, and mutated the R. solanacearum pehC gene, which encodes a distinctive monogalacturonate-releasing exo-PG. The virulence of a pehC mutant on tomato was indistinguishable from that of its wild-type parent; thus, this exo-PG alone does not contribute significantly to wilt pathogenesis. Unexpectedly, a completely PG-deficient triple pehA/B/C mutant was slightly more virulent than a pehA/B mutant. PehC may degrade galacturonide elicitors of host defense, thereby protecting the pathogen from plant antimicrobial responses. A galacturonate transporter gene, exuT, is immediately downstream of pehC and the two genes are co-transcribed. It has been hypothesized that galacturonic acid released by PGs from plant cell walls nourishes bacteria during pathogenesis. To separate the pectolytic and nutrient-generating roles of the PGs, we made an exuT mutant, which still produces all three isozymes of PG but cannot uptake PG degradation products. This exuT mutant had wild-type virulence on tomato, demonstrating that metabolism of galacturonic acid does not contribute significantly to bacterial success inside the plant.  相似文献   

6.
Type IV pili (T4P) are virulence factors in various pathogenic bacteria of animals and plants that play important roles in twitching motility, swimming motility, biofilm formation, and adhesion to host cells. Here, we genetically characterized functional roles of a putative T4P assembly protein TapV (Rsc1986 in reference strain GMI1000) and its homologue Rsp0189, which shares 58% amino acid identity with TapV, in Ralstonia solanacearum. Deletion of tapV, but not rsp0189, resulted in significantly impaired twitching motility, swimming motility, and adhesion to tomato roots, which are consistent as phenotypes of the pilA mutant (a known R. solanacearum T4P-deficient mutant). However, unlike the pilA mutant, the tapV mutant produced more biofilm than the wild-type strain. Our gene expression studies revealed that TapV, but not Rsp0189, is important for expression of a type III secretion system (T3SS, a pathogenicity determinant of R. solanacearum) both in vitro and in planta, but it is T4P independent. We further revealed that TapV affected the T3SS expression via the PhcA–TapV–PrhG–HrpB pathway, consistent with previous reports that PhcA positively regulates expression of pilA and prhG. Moreover, deletion of tapV, but not rsp0189, significantly impaired the ability to migrate into and colonize xylem vessels of host plants, but there was no alteration in intercellular proliferation of R. solanacearum in tobacco leaves, which is similar to the pilA mutant. The tapV mutant showed significantly impaired virulence in host plants. This is the first report on the impact of T4P components on the T3SS, providing novel insights into our understanding of various biological functions of T4P and the complex regulatory pathway of T3SS in R. solanacearum.  相似文献   

7.
8.
PG1, the major endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum, was secreted during growth on pectin by 10 of 12 isolates belonging to seven formae speciales, as determined with isoelectric focusing zymograms and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. A Southern analysis of genomic DNA and PCR performed with gene-specific primers revealed that the pg1 locus was highly conserved structurally in most isolates. Two PG1-deficient isolates were identified; one lacked the encoding gene, and the other carried a pg1 allele disrupted by a 3.2-kb insertion with sequence homology to hAT transposases. The virulence for muskmelon of different F. oxysporum f. sp. melonis isolates was not correlated with PG1 production in vitro. We concluded that PG1 is widely distributed in F. oxysporum and that it is not essential for pathogenicity.  相似文献   

9.
10.
Pectin is the most complex polysaccharide in nature and highly abundant in plant cell walls and middle lamellae, where it functions in plant growth and development. Phytopathogens utilize plant pectin as an energy source through enzyme-mediated degradation. These pectolytic enzymes include polygalacturonases (PGs) of the GH28 family and pectin methylesterases (PMEs) of the CE8 family. Recently, PGs were also identified in herbivorous insects of the distantly related plant bug, stick insect and Phytophaga beetle lineages. Unlike all other insects, weevils possess PMEs in addition to PGs. To investigate pectin digestion in insects and the role of PMEs in weevils, all PME and PG family members of the rice weevil Sitophilus oryzae were heterologously expressed and functionally characterized. Enzymatically active and inactive PG and PME family members were identified. The loss of activity can be explained by a lack of substrate binding correlating with substitutions of functionally important amino acid residues. We found subfunctionalization in both enzyme families, supported by expression pattern and substrate specificities as well as evidence for synergistic pectin breakdown. Our data suggest that the rice weevil might be able to use pectin as an energy source, and illustrates the potential of both PG and PME enzyme families to functionally diversify after horizontal gene transfer.  相似文献   

11.
Pseudomonas fluorescens J2 can produce 2,4-diacetylphloroglucinol (2,4-DAPG) as the main antibiotic compound and effectively inhibits the wilt pathogens Ralstonia solanacearum and Fusarium oxysporum. The phlF which negatively regulates the 2,4-DAPG synthesis in strain J2 was disrupted by homologous recombination to construct a mutant strain J2-phlF. The mutant J2-phlF produced much more 2,4-DAPG and showed higher inhibitory effect on R. solanacearum than the wild type strain J2 in vitro. The mutant J2-phlF also showed more colonization of tomato roots and higher inhibition to R. solanacearum in soil than wild type strain J2. The biocontrol efficiency of mutant J2-phlF was higher against tomato bacterial wilt than wild type strain J2, but the differences were not significant. However, the application of both strains with organic fertilizer improved the colonization and biocontrol efficiency against tomato bacterial wilt and mutant strain J2-phlF showed higher biocontrol efficiency against tomato bacterial wilt than wild type strain J2. Both strains, J2 and J2-phlF, could also promote the growth of tomato plants.  相似文献   

12.
13.
Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium''s gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum''s sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production.  相似文献   

14.
Ralstonia solanacearum, an economically important soilborne plant pathogen, infects host roots to cause bacterial wilt disease. However, little is known about this pathogen''s behavior in the rhizosphere and early in pathogenesis. In response to root exudates from tomato, R. solanacearum strain UW551 upregulated a gene resembling Dps, a nonspecific DNA binding protein from starved cells that is critical for stress survival in other bacteria. An R. solanacearum dps mutant had increased hydrogen peroxide sensitivity and mutation rate under starvation. Furthermore, dps expression was positively regulated by the oxidative stress response regulator OxyR. These functional results are consistent with a Dps annotation. The dps mutant caused slightly delayed bacterial wilt disease in tomato after a naturalistic soil soak inoculation. However, the dps mutant had a more pronounced reduction in virulence when bacteria were inoculated directly into host stems, suggesting that Dps helps R. solanacearum adapt to conditions inside plants. Passage through a tomato plant conferred transient increased hydrogen peroxide tolerance on both wild-type and dps mutant strains, demonstrating that R. solanacearum acquires Dps-independent oxidative stress tolerance during adaptation to the host environment. The dps mutant strain was also reduced in adhesion to tomato roots and tomato stem colonization. These results indicate that Dps is important when cells are starved or in stationary phase and that Dps contributes quantitatively to host plant colonization and bacterial wilt virulence. They further suggest that R. solanacearum must overcome oxidative stress during the bacterial wilt disease cycle.Bacterial wilt caused by Ralstonia solanacearum is a lethal disease affecting diverse economically important crops worldwide (20). The pathogen attacks over 200 species in more than 50 plant families (21). Although known primarily as a soilborne plant pathogen, R. solanacearum also survives in soil, water, and latently infected plants (20). The bacterium typically invades its host through natural or mechanical root wounds, multiplies in the root cortex, and then rapidly colonizes the xylem, where it reaches high cell densities. Once wilt symptoms develop, plants usually die, releasing the pathogen back into the soil (42).R. solanacearum is a tropical bacterium adapted to warmer climates, with the exception of a clonal group belonging to phylotype II, sequevar 1, of the R. solanacearum species complex (13). This group, historically and for regulatory purposes known as race 3 biovar 2 (R3bv2), causes brown rot of potato and bacterial wilt of tomato in tropical highlands and some temperate zones (11, 41, 45, 46). Because of its virulence at relatively cool temperatures, R3bv2 is a quarantine pest in Europe and Canada and a select agent pathogen in the United States (27).R. solanacearum virulence is quantitative and complex, with many contributing factors such as type II-secreted proteins, type III-secreted effectors, extracellular polysaccharide, and several plant cell wall-degrading enzymes (16, 17, 36, 38). Much of what is known about R. solanacearum comes from studies focusing on mid- or end-stage disease caused by tropical or warm-temperate strains (8, 30). A few virulence factors are known to function early in disease development: motility, energy taxis, and type IV pili, which collectively direct the bacterium toward and facilitate attachment to the host root (26, 44, 49, 50). However, R. solanacearum traits that contribute to fitness and virulence in the rhizosphere are not well understood for either tropical or R3bv2 strains.In soil, bacteria experience environmental stressors, such as pH and temperature extremes and water and oxygen limitation, as well as competition for nutrients (47). Plant roots release exudates and sloughed-off cells, supplying sufficient energy to sustain large microbial communities, provided other nutrients such as N, P, and Fe are present (19, 47). While rhizosphere bacteria can enjoy rapid growth in this relatively rich environment, fluctuating nutrient availability means that soil-dwelling microbes must survive periods of starvation (47).R. solanacearum also encounters oxidative stress in the rhizosphere. Plant roots produce reactive oxygen species (ROS) in response to many stimuli (25, 32). Several studies implicate ROS in root development and in interactions between roots and microbes (5, 24). We previously found that during plant colonization R. solanacearum is exposed to host-derived ROS, which triggers a bacterial oxidative stress response that adapts the pathogen to the xylem environment and is necessary for full virulence (8, 14).We previously described an in vivo expression technology (IVET)-like screen that identified R. solanacearum genes upregulated in the tomato rhizosphere (12). These genes encoded several known bacterial wilt virulence factors, such as the type 3 secretion regulator HrpG, the type IV pilus assembly protein PilP, global virulence regulator VsrA, and early virulence regulator PehR. The screen further identified a high-affinity cytochrome c oxidase necessary for R. solanacearum growth in microaerobic conditions (12). This paper presents our analysis of another rhizosphere-induced gene that encodes Dps, a DNA binding protein from starved cells originally described in Escherichia coli (2). Dps belongs to a family of ferritin-like stress-induced proteins that bind nonspecifically to DNA in stationary-phase bacteria (2, 29, 40). In E. coli, Dps helps maintain DNA integrity under environmentally challenging conditions, including starvation, oxidative damage, pH shock, and thermal stress (2, 10, 18, 29, 33). Dps also protects the soilborne plant-associated bacteria Agrobacterium tumefaciens and Pseudomonas putida from oxidative stress (9, 37).Traits that adapt R. solanacearum to detrimental conditions in the rhizosphere are likely to be important for pathogenic success. We hypothesized that Dps is required for adaptation to nutrient and oxidative stress and, thus, for bacterial wilt disease development. We found that Dps was highly expressed after starvation and contributed to oxidative stress tolerance in starved R. solanacearum cells. Furthermore, this protein was necessary for wild-type bacterial wilt disease development and for colonization of tomato xylem, suggesting that the bacterium must overcome a nutrient-poor and/or oxidative environment in the rhizosphere and xylem of host plants.  相似文献   

15.
As fundamentally different as phytopathogenic microbes and herbivorous insects are, they enjoy plant‐based diets. Hence, they encounter similar challenges to acquire nutrients. Both microbes and beetles possess polygalacturonases (PGs) that hydrolyze the plant cell wall polysaccharide pectin. Countering these threats, plant proteins inhibit PGs of microbes, thereby lowering their infection rate. Whether PG‐inhibiting proteins (PGIPs) play a role in defense against herbivorous beetles is unknown. To investigate the significance of PGIPs in insect–plant interactions, feeding assays with the leaf beetle Phaedon cochleariae on Arabidopsis thaliana pgip mutants were performed. Fitness was increased when larvae were fed on mutant plants compared to wild‐type plants. Moreover, PG activity was higher, although PG genes were downregulated in larvae fed on PGIP‐deficient plants, strongly suggesting that PGIPs impair PG activity. As low PG activity resulted in delayed larval growth, our data provide the first in vivo correlative evidence that PGIPs act as defense against insects.  相似文献   

16.
Bacterial wilt caused by Ralstonia solanacearum is a serious threat for agricultural production in China. Eight soil bacterial isolates with activity against R. solanacearum TM15 (biovar 3) were tested in this study for their in vitro activity towards ten genetically diverse R. solanacearum isolates from China. The results indicated that each antagonist showed remarkable differences in its ability to in vitro antagonize the ten different R. solanacearum strains. Strain XY21 (based on 16S rRNA gene sequencing affiliated to Serratia) was selected for further studies based on its in vitro antagonistic activity and its excellent rhizocompetence on tomato plants. Under greenhouse conditions XY21 mediated biocontrol of tomato wilt caused by seven different R. solanacearum strains ranged from 19 to 70 %. The establishment of XY21 and its effects on the bacterial community in the tomato rhizosphere were monitored by denaturing gradient gel electrophoresis of 16S rRNA gene fragments PCR-amplified from total community DNA. A positive correlation of the in vitro antagonistic activities of XY21 and the actual biocontrol efficacies towards seven genetically different R. solanacearum strains was found and further confirmed by the efficacy of XY21 in controlling bacterial wilt under field conditions.  相似文献   

17.
Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease of Solanaceae crops. In this study, the soil microbial effects of silicon-induced tomato resistance against R. solanacearum were investigated through pot experiment. The results showed that exogenous 2.0 mM Si treatment reduced the disease index of bacterial wilt by 19.18 % to 52.7 % compared with non-Si-treated plants. The uptake of Si was significantly increased in the Si-treated tomato plants, where the Si content was higher in the roots than that in the shoots. R. solanacearum inoculation resulted in a significant increase of soil urease activity and reduction of soil sucrase activity, but had no effects on soil acid phosphatase activity. Si supply significantly increased soil urease and soil acid phosphatase activity under pathogen-inoculated conditions. Compared with the non-inoculated treatment, R. solanacearum infection significantly reduced the amount of soil bacteria and actinomycetes by 52.5 % and 16.5 %, respectively, but increased the ratio of soil fungi/soil bacteria by 93.6 %. After R. solanacearum inoculation, Si amendments significantly increased the amount of soil bacteria and actinomycetes and reduced soil fungi/soil bacteria ratio by 53.6 %. The results suggested that Si amendment is an effective approach to control R. solanacearum. Moreover, Si-mediated resistance in tomato against R. solanacearum is associated with the changes of soil microorganism amount and soil enzyme activity.  相似文献   

18.
Burkholderia cepacia has emerged as an important pathogen in patients with cystic fibrosis. Many gram-negative pathogens regulate the production of extracellular virulence factors by a cell density-dependent mechanism termed quorum sensing, which involves production of diffusible N-acylated homoserine lactone signal molecules, called autoinducers. Transposon insertion mutants of B. cepacia K56-2 which hyperproduced siderophores on chrome azurol S agar were identified. One mutant, K56-R2, contained an insertion in a luxR homolog that was designated cepR. The flanking DNA region was used to clone the wild-type copy of cepR. Sequence analysis revealed the presence of cepI, a luxI homolog, located 727 bp upstream and divergently transcribed from cepR. A lux box-like sequence was identified upstream of cepI. CepR was 36% identical to Pseudomonas aeruginosa RhlR and 67% identical to SolR of Ralstonia solanacearum. CepI was 38% identical to RhlI and 64% identical to SolI. K56-R2 demonstrated a 67% increase in the production of the siderophore ornibactin, was protease negative on dialyzed brain heart infusion milk agar, and produced 45% less lipase activity in comparison to the parental strain. Complementation of a cepR mutation restored parental levels of ornibactin and protease but not lipase. An N-acylhomoserine lactone was purified from culture fluids and identified as N-octanoylhomoserine lactone. K56-I2, a cepI mutant, was created and shown not to produce N-octanoylhomoserine lactone. K56-I2 hyperproduced ornibactin and did not produce protease. These data suggest both a positive and negative role for cepIR in the regulation of extracellular virulence factor production by B. cepacia.  相似文献   

19.
The methylotrophic yeast Candida boidinii S2 was found to be able to grow on pectin or polygalacturonate as a carbon source. When cells were grown on 1% (wt/vol) pectin, C. boidinii exhibited induced levels of the pectin-depolymerizing enzymes pectin methylesterase (208 mU/mg of protein), pectin lyase (673 mU/mg), pectate lyase (673 mU/mg), and polygalacturonase (3.45 U/mg) and two methanol-metabolizing peroxisomal enzymes, alcohol oxidase (0.26 U/mg) and dihydroxyacetone synthase (94 mU/mg). The numbers of peroxisomes also increased ca. two- to threefold in cells grown on these pectic compounds (3.34 and 2.76 peroxisomes/cell for cells grown on pectin and polygalacturonate, respectively) compared to the numbers in cells grown on glucose (1.29 peroxisomes/cell). The cell density obtained with pectin increased as the degree of methyl esterification of pectic compounds increased, and it decreased in strains from which genes encoding alcohol oxidase and dihydroxyacetone synthase were deleted and in a peroxisome assembly mutant. Our study showed that methanol metabolism and peroxisome assembly play important roles in the degradation of pectin, especially in the utilization of its methyl ester moieties.  相似文献   

20.
《Biological Control》2005,32(1):111-120
Bacterial wilt caused by Ralstonia solanacearum race 1, biovar III has become a severe problem in Eucalyptus plantations in south China. The disease mainly attacks young eucalypt trees, and no effective control measures are available yet. To explore possibilities to develop biological control of the disease, strains of fluorescent Pseudomonas spp. that are effective in suppressing plant diseases by known mechanisms, were tested for their potential to control bacterial wilt in Eucalyptus. Pseudomonas putida WCS358r, Pseudomonas fluorescens WCS374r, P. fluorescens WCS417r, and Pseudomonas aeruginosa 7NSK2 antagonize R. solanacearum in vitro by siderophore-mediated competition for iron, whereas inhibition of pathogen growth by P. fluorescens CHA0r is antibiosis-based. No correlations were found between antagonistic activities of these Pseudomonas spp. in vitro and biocontrol of bacterial wilt in Eucalyptus in vivo. None of the strains suppressed disease when mixed together with the pathogen through the soil or when seeds or seedlings were treated with the strains one to four weeks before transfer into soil infested with R. solanacearum. However, when the seedlings were dipped with their roots in a bacterial suspension before transplanting into infested soil, P. fluorescens WCS417r significantly suppressed bacterial wilt. P. putida WCS358r was marginally effective, whereas its siderophore-minus mutant had no effect at all, indicating that siderophore-mediated competition for iron can contribute but is not effective enough to suppress bacterial wilt in Eucalyptus. A derivative of P. putida WCS358r, constitutively producing 2,4-diacetylphloroglucinol (WCS358::phl) reduced disease. Combined treatment with P. fluorescens WCS417r and P. putida WCS358::phl did not improve suppression of bacterial wilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号