首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ARC (amidoxime reducing component) proteins are molybdenum cofactor (Moco) enzymes named hmARC1 and hmARC2 (human ARCs [hmARCs]) in humans and YcbX in Escherichia coli. They catalyze the reduction of a broad range of N-hydroxylated compounds (NHC) using reducing power supplied by other proteins. Some NHC are prodrugs or toxic compounds. YcbX contains a ferredoxin (Fd) domain and requires the NADPH flavin reductase CysJ to reduce NHC. In contrast, hmARCs lack the Fd domain and require a human cytochrome b5 (hCyt b5) and a human NADH Cyt b5 reductase (hCyt b5-R) to reduce NHC. The ARC proteins in the plant kingdom are uncharacterized. We demonstrate that Chlamydomonas reinhardtii mutants defective in Moco biosynthesis genes are sensitive to the NHC N(6)-hydroxylaminopurine (HAP). The Chlamydomonas reinhardtii ARC protein crARC has been purified and characterized. The six Chlamydomonas Fds were isolated, but none of them are required by crARC to reduce HAP. We have also purified and characterized five C. reinhardtii Cyt b5 (crCyt b5) and two flavin reductases, one that is NADPH dependent (crCysJ) and one that is NADH dependent (crCyt b5-R). The data show that crARC uses crCyt b5-1 and crCyt b5-R to reduce HAP. The crARC has a Zn-dependent activity, and the presence of Zn increases its V(max) more than 14-fold. In addition, all five cysteines of crARC were substituted by alanine, and we demonstrate that the fully conserved cysteine 252 is essential for both Moco binding and catalysis. Therefore, it is proposed that crARC belongs to the sulfite oxidase family of Moco enzymes.  相似文献   

2.
The molybdenum cofactor (Moco) forms the catalytic site in all eukaryotic molybdenum enzymes and is synthesized by a multistep biosynthetic pathway. The mechanism of transfer, storage, and insertion of Moco into the appropriate apo-enzyme is poorly understood. In Chlamydomonas reinhardtii, a Moco carrier protein (MCP) has been identified and characterized recently. Here we show biochemical evidence that MCP binds Moco as well as the tungstate-substituted form of the cofactor (Wco) with high affinity, whereas molybdopterin, the ultimate cofactor precursor, is not bound. This binding selectivity points to a specific metal-mediated interaction with MCP, which protects Moco and Wco from oxidation with t((1/2)) of 24 and 96 h, respectively. UV-visible spectroscopy showed defined absorption bands at 393, 470, and 570 nm pointing to ene-diothiolate and protein side-chain charge transfer bonds with molybdenum. We have determined the crystal structure of MCP at 1.6 Angstrom resolution using seleno-methionated and native protein. The monomer constitutes a Rossmann fold with two homodimers forming a symmetrical tetramer in solution. Based on conserved surface residues, charge distribution, shape, in silico docking studies, structural comparisons, and identification of an anionbinding site, a prominent surface depression was proposed as a Moco-binding site, which was confirmed by structure-guided mutagenesis coupled to substrate binding studies.  相似文献   

3.
The atp6 gene, encoding the ATP6 subunit of F(1)F(0)-ATP synthase, has thus far been found only as an mtDNA-encoded gene. However, atp6 is absent from mtDNAs of some species, including that of Chlamydomonas reinhardtii. Analysis of C. reinhardtii expressed sequence tags revealed three overlapping sequences that encoded a protein with similarity to ATP6 proteins. PCR and 5'- and 3'-RACE were used to obtain the complete cDNA and genomic sequences of C. reinhardtii atp6. The atp6 gene exhibited characteristics of a nucleus-encoded gene: Southern hybridization signals consistent with nuclear localization, the presence of introns, and a codon usage and a polyadenylation signal typical of nuclear genes. The corresponding ATP6 protein was confirmed as a subunit of the mitochondrial F(1)F(0)-ATP synthase from C. reinhardtii by N-terminal sequencing. The predicted ATP6 polypeptide has a 107-amino acid cleavable mitochondrial targeting sequence. The mean hydrophobicity of the protein is decreased in those transmembrane regions that are predicted not to participate directly in proton translocation or in intersubunit contacts with the multimeric ring of c subunits. This is the first example of a mitochondrial protein with more than two transmembrane stretches, directly involved in proton translocation, that is nucleus-encoded.  相似文献   

4.
5.
Voss M  Nimtz M  Leimkühler S 《PloS one》2011,6(11):e28170
The pathway of molybdenum cofactor biosynthesis has been studied in detail by using proteins from Mycobacterium species, which contain several homologs associated with the first steps of Moco biosynthesis. While all Mycobacteria species contain a MoeZR, only some strains have acquired an additional homolog, MoeBR, by horizontal gene transfer. The role of MoeBR and MoeZR was studied in detail for the interaction with the two MoaD-homologs involved in Moco biosynthesis, MoaD1 and MoaD2, in addition to the CysO protein involved in cysteine biosynthesis. We show that both proteins have a role in Moco biosynthesis, while only MoeZR, but not MoeBR, has an additional role in cysteine biosynthesis. MoeZR and MoeBR were able to complement an E. coli moeB mutant strain, but only in conjunction with the Mycobacterial MoaD1 or MoaD2 proteins. Both proteins were able to sulfurate MoaD1 and MoaD2 in vivo, while only MoeZR additionally transferred the sulfur to CysO. Our in vivo studies show that Mycobacteria have acquired several homologs to maintain Moco biosynthesis. MoeZR has a dual role in Moco- and cysteine biosynthesis and is involved in the sulfuration of MoaD and CysO, whereas MoeBR only has a role in Moco biosynthesis, which is not an essential function for Mycobacteria.  相似文献   

6.
Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins required for flagellar length control have been identified in any eukaryotic organism. Here, we show that a novel MAP kinase is crucial to enforcing wild-type flagellar length in C. reinhardtii. Null mutants of LF4 [2], a gene encoding a protein with extensive amino acid sequence identity to a mammalian MAP kinase of unknown function, MOK [3], are unable to regulate the length of their flagella. The LF4 protein (LF4p) is localized to the flagella, and in vitro enzyme assays confirm that the protein is a MAP kinase. The long-flagella phenotype of lf4 cells is rescued by transformation with the cloned LF4 gene. The demonstration that a novel MAP kinase helps enforce flagellar length control indicates that a previously unidentified signal transduction pathway controls organelle size in C. reinhardtii.  相似文献   

7.
Chloroplasts of plant cells have their own genome, and a basic recombination protein homologous to the eubacterial RecA was suggested to be involved in the perpetuation of chloroplast DNA. A candidate cDNA sequence encoding the chloroplast RecA protein was identified from the Kazusa EST database for the unicellular green alga, Chlamydomonas reinhardtii (http://www.kazusa.or.jp/en/plant/chlamy/EST/). Analysis of the cDNA sequence identified an open reading frame (ORF) of 414 amino acids encoding a eubacteria-type RecA protein. Thus the corresponding gene was named REC1. The predicted protein contains an N-terminal extension that does not show any similarity with other RecA proteins. Transient expression of a REC1-sGFP (green fluorescent protein) fusion construct in tobacco cells has indicated that this N-terminal sequence functions as a transit peptide for import into chloroplasts. Since DNA-damaging reagents induced the REC1 mRNA, REC1 was suggested to have roles in DNA recombination and repair of the chloroplast DNA in C. reinhardtii.  相似文献   

8.
We have constructed a physical and gene map for the chloroplast DNA (cpDNA) of the unicellular green alga Chlamydomonas gelatinosa, a close relative of Chlamydomonas reinhardtii. At 285 kb, the C. gelatinosa cpDNA is 89 kb larger than its C. reinhardtii counterpart. The alterations in the order of 77 genes on the cpDNAs of these green algae are attributable to nine inversions and one event of expansion/contraction of the inverted repeat. These rearrangements are much more extensive than those previously reported between the cpDNAs of the closely related Chlamydomonas moewusii and Chlamydomonas pitschmannii. Because the divergence level of the C. gelatinosa and C. reinhardtii chloroplast-encoded large subunit rRNA gene sequences is equivalent to that of the corresponding C. moewusii and C. pitschmannii sequences, our results may suggest that, in the same period of time, there have been more numerous rearrangements in the lineage comprising C. gelatinosa and C. reinhardtii than in the lineage comprising C. moewusii and C. pitschmannii. Alternatively, given that substitution rates in chloroplast genes are not necessarily uniform across lineages, the extensive rearrangements between the C. gelatinosa and C. reinhardtii cpDNAs may reflect a longer divergence period for this pair of Chlamydomonas species compared to that for the C. moewusii/C. pitschmannii pair. We have also found that, like its C. reinhardtii homologue but unlike its C. moewusii and C. pitschmannii counterparts, the C. gelatinosa cpDNA features a large number of dispersed repeated sequences that are readily detectable by Southern blot hybridization with homologous fragment probes. Assuming that the two pairs of closely related Chlamydomonas species diverged at about the same time, these data suggest that the susceptibility of Chlamydomonas cpDNAs to rearrangements is correlated with the abundance of repeated sequences. Preliminary characterization of a 345-bp C. gelatinosa cpDNA region containing a repeated sequence by both DNA sequencing and Southern blot analysis has revealed no sequence homology between this region and the cpDNAs of C. reinhardtii and other Chlamydomonas species.   相似文献   

9.
10.
11.
The sequence and organization of the Chlamydomonas reinhardtii genes encoding cytochrome c(1) ( Cyc1) and the Rieske-type iron-sulfur protein ( Isp), two key nucleus-encoded subunits of the mitochondrial cytochrome bc(1) complex, are presented. Southern hybridization analysis indicates that both Cyc1 and Isp are present as single-copy genes in C. reinhardtii. The Cyc1 gene spans 6404 bp and contains six introns, ranging from 178 to 1134 bp in size. The Isp gene spans 1238 bp and contains four smaller introns, ranging in length from 83 to 167 bp. In both genes, the intron/exon junctions follow the GT/AG rule. Internal conserved sequences were identified in only some of the introns in the Cyc1 gene. The levels of expression of Isp and Cyc1 genes are comparable in wild-type C. reinhardtii cells and in a mutant strain carrying a deletion in the mitochondrial gene for cytochrome b (dum-1). Nevertheless, no accumulation of the nucleus-encoded cytochrome c(1) or of core proteins I and II was observed in the membranes of the respiratory mutant. These data show that, in the green alga C. reinhardtii, the subunits of the cytochrome bc(1) complex fail to assemble properly in the absence of cytochrome b.  相似文献   

12.
13.
The availability of the complete DNA sequence of the Chlamydomonas reinhardtii genome and advanced computational biology tools has allowed elucidation and study of the small ubiquitin-like modifier (SUMO) system in this unicellular photosynthetic alga and model eukaryotic cell system. SUMO is a member of a ubiquitin-like protein superfamily that is covalently attached to target proteins as a post-translational modification to alter the localization, stability, and/or function of the target protein in response to changes in the cellular environment. Three SUMO homologs (CrSUMO96, CrSUMO97, and CrSUMO148) and three novel SUMO-related proteins (CrSUMO-like89A, CrSUMO-like89B, and CrSUMO-like90) were found by diverse gene predictions, hidden Markov models, and database search tools inferring from Homo sapiens, Saccharomyces cerevisiae, and Arabidopsis thaliana SUMOs. Among them, CrSUMO96, which can be recognized by the A. thaliana anti-SUMO1 antibody, was studied in detail. Free CrSUMO96 was purified by immunoprecipitation and identified by mass spectrometry analysis. A SUMO-conjugating enzyme (SCE) (E2, Ubc9) in C. reinhardtii was shown to be functional in an Escherichia coli-based in vivo chimeric SUMOylation system. Antibodies to CrSUMO96 recognized free and conjugated forms of CrSUMO96 in Western blot analysis of whole-cell extracts and nuclear localized SUMOylated proteins with in situ immunofluorescence. Western blot analysis showed a marked increase in SUMO conjugated proteins when the cells were subjected to environmental stresses, such as heat shock and osmotic stress. Related analyses revealed multiple potential ubiquitin genes along with two Rub1 genes and one Ufm1 gene in the C. reinhardtii genome.  相似文献   

14.
15.
The Lhcb gene family in green plants encodes several light-harvesting Chl a/b-binding (LHC) proteins that collect and transfer light energy to the reaction centers of PSII. We comprehensively characterized the Lhcb gene family in the unicellular green alga, Chlamydomonas reinhardtii, using the expressed sequence tag (EST) databases. A total of 699 among over 15,000 ESTs related to the Lhcb genes were assigned to eight, including four new, genes that we isolated and sequenced here. A sequence comparison revealed that six of the Lhcb genes from C. reinhardtii correspond to the major LHC (LHCII) proteins from higher plants, and that the other two genes (Lhcb4 and Lhcb5) correspond to the minor LHC proteins (CP29 and CP26). No ESTs corresponding to another minor LHC protein (CP24) were found. The six LHCII proteins in C. reinhardtii cannot be assigned to any of the three types proposed for higher plants (Lhcb1-Lhcb3), but were classified as follows: Type I is encoded by LhcII-1.1, LhcII-1.2 and LhcII-1.3, and Types II, III and IV are encoded by LhcII-2, LhcII-3 and LhcII-4, respectively. These findings suggest that the ancestral LHC protein diverged into LHCII, CP29 and CP26 before, and that LHCII diverged into multiple types after the phylogenetic separation of green algae and higher plants.  相似文献   

16.
把莱茵衣藻(Chlamydomonas reinhardtii)叶绿体作为生物反应器来表达外源基因具有广阔的应用前景。人们利用莱茵衣藻叶绿体表达体系已成功表达多种重组蛋白,其中包括人类药用蛋白。综述了莱茵衣藻叶绿体转化的方法、影响外源基因表达的主要因素以及外源基因在莱茵衣藻叶绿体表达研究进展。  相似文献   

17.
18.
The polymerase chain reaction was used to identify novel IAI subgroup introns in cpDNA-enriched preparations from the interfertile green algae Chlamydomonas eugametos and Chlamydomonas moewusii. These experiments along with sequence analysis disclosed the presence, in both green algae, of a single IA1 intron in the psaB gene and of two group I introns (IA2 and IA1) in the psbC gene. In addition, two group I introns (IA1 and IB4) were found in the peptidyltransferase region of the mitochondrial large subunit rRNA gene at the same positions as previously reported Chlamydomonas chloroplast introns. The 188 bp segment preceding the first mitochondrial intron revealed extensive sequence similarity to the distantly spaced rRNA-coding modules L7 and L8 in the Chlamydomonas reinhardtii mitochondrial DNA, indicating that these two modules have undergone rearrangements in Chlamydomonas. The IA1 introns in psaB and psbC were found to be related in sequence to the first intron in the C. moewusii chloroplast psbA gene. The similarity between the former introns extends to the immediate 5' flanking exon sequence, suggesting that group I intron transposition occurred from one of the two genes to the other through reverse splicing.  相似文献   

19.
20.
A cDNA encoding sperm antigen 6 (Spag6), the murine homologue of the Chlamydomonas reinhardtii PF16 protein-a component of the flagella central apparatus-was isolated from a mouse testis cDNA library. The cDNA sequence predicted a 55.3-kDa polypeptide containing 8 contiguous armadillo repeats with 65% amino acid sequence identity and 81% similarity to the Chlamydomonas PF1 protein. An antipeptide antibody generated against a C-terminal sequence recognized a 55-kDa protein in sperm extracts and localized Spag6 to the principal piece of permeabilized mouse sperm tails. When expressed in COS-1 cells, Spag6 colocalized with microtubules. The Spag6 gene was found to be highly expressed in testis and was mapped using the T31 radiation hybrid panel to mouse chromosome 16. Mutations in the Chlamydomonas PF16 gene cause flagellar paralysis. The presence of a highly conserved mammalian PF16 homologue (Spag6) raises the possibility that Spag6 plays an important role in sperm flagellar function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号