首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air–water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may : i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.  相似文献   

2.
The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air-water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may: i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.  相似文献   

3.
The contribution of raft domains to human immunodeficiency virus (HIV) 1 entry was assessed. In particular, we asked whether the CD4 and CCR5 HIV-1 receptors need to associate with sphingolipid-enriched, detergent-resistant membrane domains (rafts) to allow viral entry into primary and T-cell lines. Based on Triton X-100 solubilization and confocal microscopy, CD4 was shown to distribute partially to rafts. In contrast, CCR5 did not associate with rafts and localized in nonraft plasma membrane domains. HIV-1-receptor partitioning remained unchanged upon viral adsorption, suggesting that viral entry probably takes place outside rafts. To directly investigate this possibility, we targeted CD4 to nonraft domains of the membrane by preventing CD4 palmitoylation and interaction with p56(lck). Directed mutagenesis of both targeting signals significantly prevented association of CD4 with rafts, but did not suppress the HIV-1 receptor function of CD4. Collectively, these results strongly suggest that the presence of HIV-1 receptors in rafts is not required for viral infection. We show, however, that depleting plasma membrane cholesterol inhibits HIV-1 entry. We therefore propose that cholesterol modulates the HIV-1 entry process independently of its ability to promote raft formation.  相似文献   

4.
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4 + T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins — Channels for Cellular Networking.  相似文献   

5.
Lipid rafts are special microdomains in the plasma membrane. They are enriched in sphingolipids and cholesterol, playing critical roles in many biological processes. The purpose of this study is to analyze the requirement of cholesterol, a crucial component of lipid rafts for cell infection by pseudorabies virus (PrV). Cholesterol of plasma membrane or viral envelope was depleted with methyl-beta-cyclodextrin (MβCD), and the infectivity of three strains of PrV was determined with plaque assays. The effect of adding cholesterol to MβCD-treated cells and viruses on cell infection was analyzed. Furthermore, effect of post-adsorption cholesterol depletion on PrV infection was investigated. We show that cholesterol depletion of either the plasma membrane or the viral membrane by MβCD significantly impaired the infectivity of PrV strains Kaplan, Becker, and Bartha K-61. The virus was shown to have lower cholesterol content and to respond to lower MβCD concentrations. Exogenous cholesterol added to either MβCD-treated cells or virions partially restored the virus infectivity. Optimal PrV infection requires cholesterol in viral and plasma membranes.  相似文献   

6.
Lipid rafts are membrane microdomains enriched in cholesterol, sphingolipids, and glycolipids that have been implicated in many biological processes. Since cholesterol is known to play a key role in the entry of some other viruses, we investigated the role of cholesterol and lipid rafts in the host cell plasma membrane in Newcastle Disease Virus (NDV) entry. We used methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol and disrupt lipid rafts. Our results show that the removal of cellular cholesterol partially reduces viral binding, fusion and infectivity. MβCD had no effect on the expression of sialic acid containing molecule expression, the NDV receptors in the target cell. All the above-described effects were reversed by restoring cholesterol levels in the target cell membrane. The HN viral attachment protein partially localized to detergent-resistant membrane microdomains (DRMs) at 4°C and then shifted to detergent-soluble fractions at 37°C. These results indicate that cellular cholesterol may be required for optimal cell entry in NDV infection cycle.  相似文献   

7.
The membrane of human immunodeficiency virus type 1 (HIV-1) virions contains high levels of cholesterol and sphingomyelin, an enrichment that is explained by the preferential budding of the virus through raft microdomains of the plasma membrane. Upon depletion of cholesterol from HIV-1 virions with methyl-beta-cyclodextrin, infectivity was almost completely abolished. In contrast, this treatment had only a mild effect on the infectiousness of particles pseudotyped with the G envelope of vesicular stomatitis virus. The cholesterol-chelating compound nystatin had a similar effect. Cholesterol-depleted HIV-1 virions exhibited wild-type patterns of viral proteins and contained normal levels of cyclophilin A and glycosylphosphatidylinositol-anchored proteins. Nevertheless, and although they could still bind target cells, these virions were markedly defective for internalization. These results indicate that the cholesterol present in the HIV-1 membrane plays a prominent role in the fusion process that is key to viral entry and suggest that drugs capable of disturbing the lipid composition of virions could serve as a basis for the development of microbicides.  相似文献   

8.
HIV-1 assembly depends on its structural protein, Gag, which after synthesis on ribosomes, traffics to the late endosome/plasma membrane, associates with HIV Env glycoprotein, and forms infectious virions. While Env and Gag migrate to lipid microdomains, their stoichiometry and specificity of interaction are unknown. Pseudotyped viral particles can be made with one viral core surrounded by heterologous envelope proteins. Taking advantage of this property, we analyzed the association of HIV Env and Ebola glycoprotein (GP), with HIV-1 Gag coexpressed in the same cell. Though both viral glycoproteins were expressed, each associated independently with Gag, giving rise to distinct virion populations, each with a single glycoprotein type. Confocal imaging demonstrated that Env and GP localized to distinct lipid raft microdomains within the same cell where they associated with different virions. Thus, a single Gag particle associates "quantally" with one lipid raft, containing homogeneous trimeric viral envelope proteins, to assemble functional virions.  相似文献   

9.
Respiratory syncytial virus (RSV) is one of the major causes of respiratory infections in children, and it is the main pathogen causing bronchiolitis in infants. The binding and entry mechanism by which RSV infects respiratory epithelial cells has not yet been determined. In this study, the earliest stages of RSV infection in normal human bronchial epithelial cells were probed by tracking virions with fluorescent lipophilic dyes in their membranes. Virions colocalized with cholesterol-containing plasma membrane microdomains, identified by their ability to bind cholera toxin subunit B. Consistent with an important role for cholesterol in RSV infection, cholesterol depletion profoundly inhibited RSV infection, while cholesterol repletion reversed this inhibition. Merger of the outer leaflets of the viral envelope and the cell membrane appeared to be triggered at these sites. Using small-molecule inhibitors, RSV infection was found to be sensitive to Pak1 inhibition, suggesting the requirement of a subsequent step of cytoskeletal reorganization that could involve plasma membrane rearrangements or endocytosis. It appears that RSV entry depends on its ability to dock to cholesterol-rich microdomains (lipid rafts) in the plasma membrane where hemifusion events begin, assisted by a Pak1-dependent process.  相似文献   

10.
Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion   总被引:8,自引:0,他引:8  
Protein organization on the membrane of target cells may modulate HIV-1 transmission. Since the tetraspanin CD81 is associated to CD4, the receptor of HIV-1 envelope protein (Env; gp120/gp41), we have explored the possibility that this molecule may modulate the initial steps of HIV-1 infection. On the other hand, CD81 belongs to the tetraspanin family, which has been described as organizers of protein microdomains on the plasma membrane. Therefore, the role of CD81 and other related tetraspanin, CD9, on the cell-to-cell fusion process mediated by HIV-1 was studied. We found that anti-tetraspanin Abs enhanced the syncytia formation induced by HIV-1 envelope proteins and viral entry in human T lymphoblasts. In addition, anti-CD81 Abs triggered its clustering in patches, where CD4 and CXCR4 were included. Moreover, the knocking down of CD81 and CD9 expression resulted in an increase in syncytia formation and viral entry. Accordingly, overexpression of CD81 and CD9 rendered cells less susceptible to Env-mediated syncytia formation. These data indicate that CD9 and CD81 have an important role in membrane fusion induced by HIV-1 envelope.  相似文献   

11.
To initiate an infection human immunodeficiency virus type 1 (HIV-1) particles must first bind to receptors on the surface of their host cells, a process that eventually leads to fusion of viral and cellular membranes and release of the viral genome into the cytoplasm. Understanding the molecular mechanisms of these processes may enable the development of new anti-HIV strategies. Disagreement currently prevails on the role in virus entry of microdomains within the cellular plasma membrane known as lipid rafts. Experiments have suggested that lipid rafts, in their interactions with cellular receptors and viral particles, either promote or have minimal effect on viral entry. Here we develop a dynamic model for HIV-1 entry that enables us to identify and quantitatively assess tradeoffs that can arise from the clustering of receptors in rafts. Specifically, receptor clustering can be detrimental to the initiation of viral infection by reducing the probability that a virus particle finds its primary receptor, CD4. However, receptor clustering can also enable a virus particle, once bound, to rapidly form multivalent interactions with receptors and co-receptors that are required for virus-cell membrane fusion. We show how the resolution of such tradeoffs hinges on the level and spatial distribution of receptors and co-receptors on the cell surface, and we discuss implications of these effects for the design of therapeutics that inhibit HIV-1 entry.  相似文献   

12.
HIV-1 contact with target cells triggers F-actin rearrangements that are essential for several steps of the viral cycle. Successful HIV entry into CD4+ T cells requires actin reorganization induced by the interaction of the cellular receptor/co-receptor complex CD4/CXCR4 with the viral envelope complex gp120/gp41 (Env). In this report, we analyze the role of the actin modulator drebrin in HIV-1 viral infection and cell to cell fusion. We show that drebrin associates with CXCR4 before and during HIV infection. Drebrin is actively recruited toward cell-virus and Env-driven cell to cell contacts. After viral internalization, drebrin clustering is retained in a fraction of the internalized particles. Through a combination of RNAi-based inhibition of endogenous drebrin and GFP-tagged expression of wild-type and mutant forms, we establish drebrin as a negative regulator of HIV entry and HIV-mediated cell fusion. Down-regulation of drebrin expression promotes HIV-1 entry, decreases F-actin polymerization, and enhances profilin local accumulation in response to HIV-1. These data underscore the negative role of drebrin in HIV infection by modulating viral entry, mainly through the control of actin cytoskeleton polymerization in response to HIV-1.  相似文献   

13.
Recent evidence has suggested that plasma membrane sphingolipids and cholesterol spontaneously coalesce into raft-like microdomains and that specific proteins, including CD4 and some other T-cell signaling molecules, sequester into these rafts. In agreement with these results, we found that CD4 and the associated Lck tyrosine kinase of peripheral blood mononuclear cells and H9 leukemic T cells were selectively and highly enriched in a low-density lipid fraction that was resistant at 0 degrees C to the neutral detergent Triton X-100 but was disrupted by extraction of cholesterol with filipin or methyl-beta-cyclodextrin. In contrast, the CXCR4 chemokine receptor, a coreceptor for X4 strains of human immunodeficiency virus type 1 (HIV-1), was almost completely excluded from the detergent-resistant raft fraction. Accordingly, as determined by immunofluorescence with confocal microscopy, CD4 and CXCR4 did not coaggregate into antibody-induced cell surface patches or into patches of CXCR4 that formed naturally at the ruffled edges of adherent cells. The CXCR4 fluorescent patches were extracted with cold 1% Triton X-100, whereas the CD4 patches were resistant. In stringent support of these data, CD4 colocalized with patches of cholera toxin bound to the raft-associated sphingoglycolipid GM1, whereas CXCR4 did not. Addition of the CXCR4-activating chemokine SDF-1 alpha did not induce CXCR4 movement into rafts. Moreover, binding of purified monomeric gp120 envelope glycoproteins from strains of HIV-1 that use this coreceptor did not stimulate detectable redistributions of CD4 or CXCR4 between their separate membrane domains. However, adsorption of multivalent gp120-containing HIV-1 virion particles appeared to destabilize the local CD4-containing rafts. Indeed, adsorbed HIV-1 virions were detected by immunofluorescence microscopy and were almost all situated in nonraft regions of the cell surface. We conclude that HIV-1 initially binds to CD4 in a raft domain and that its secondary associations with CXCR4 require shifts of proteins and associated lipids away from their preferred lipid microenvironments. Our evidence suggests that these changes in protein-lipid interactions destabilize the plasma membrane microenvironment underlying the virus by at least several kilocalories per mole, and we propose that this makes an important contribution to fusion of the viral and cellular membranes during infection. Thus, binding of HIV-1 may be favored by the presence of CD4 in rafts, but the rafts may then disperse prior to the membrane fusion reaction.  相似文献   

14.
The initial step in the interaction between human immunodeficiency virus (HIV-1) and epithelial cells is the binding of HIV-1 envelope glycoproteins to the epithelial cell galactosyl ceramide (GalCer). Here we show that HIV-1 envelope gp41 residues 650-685 bind GalCer in a galactose-specific manner. The gp41 residues that display this lectin activity are highly conserved among HIV-1 isolates and constitute three regions: residues 650-661, which encompass a charged helix; residues 662-667, referred to as the conserved epitope ELDKWA, the epitope recognized by antibodies that neutralize HIV-1 entry in epithelial and CD4(+)-mononucleated cells; and residues 668-685, a hydrophobic Trp-rich sequence that stabilizes the structure of the galactose binding site. Similar to other galactose-specific lectins, the gp41 lectin site is active only as an oligomer. Finally the orientation of the galactose toward the gp41 lectin site appears to be controlled by the lipid microenvironment of the epithelial membrane. From the experimental data we construct a theoretical model of the interaction between gp41 and GalCer based on thermodynamic considerations. This model integrates the dynamics and the spatial organization of the viral envelope glycoproteins, GalCer organized in raft microdomains in the apical region of the epithelial cell membrane and the interfacial water. Characterization of the minimal sequence and structure of gp41 in direct interaction with GalCer may help unravel the still unknown immunogenic determinant able to elicit antibodies against ELDKWA and target of one of the rare neutralizing antibodies against gp41.  相似文献   

15.
Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM‐FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO‐K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO‐K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell‐to‐cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes.  相似文献   

16.
HIV-1 infects host cells by sequential interactions of its fusion protein (gp120-gp41) with receptors CD4, CXCR4 and/or CCR5 followed by fusion of viral and host membranes. Studies indicate that additional factors such as receptor density and composition of viral and cellular lipids can dramatically modulate the fusion reaction. Lipid rafts, which primarily consist of sphingolipids and cholesterol, have been implicated for infectious route of HIV-1 entry. Plasma membrane Glycosphingolipids (GSLs) have been proposed to support HIV-1 infection in multiple ways: (a) as alternate receptor(s) for CD4-independent entry in neuronal and other cell types, (b) viral transmission, and (c) gp120-gp41-mediated membrane fusion. However, the exact mechanism(s) by which GSLs support fusion is still elusive. This article will focus on the contribution of target membrane sphingolipids and their metabolites in modulating viral entry. We will discuss the current working hypotheses underlying the mechanisms by which these lipids promote and/or block HIV-1 entry. Recent approaches in the design and development of novel glycosyl derivatives, as anti-HIV agents will be summarized.  相似文献   

17.
Membrane cholesterol is required to maintain chemokine receptor conformation and function for CXCR4 and CCR5. We previously demonstrated that chemokines preferentially bind to receptors within lipid rafts, which are cholesterol- and sphingolipid-rich membrane microdomains. To further elucidate the role of cholesterol in chemokine receptor function, we examined the effects of membrane cholesterol oxidation by cholesterol oxidase (CO), which enzymatically converts cholesterol to 4-cholesten-3-one. Here, we demonstrate that CO treatment (0.25-2.0 U/ml) of human T cells inhibits CXCL12 (SDF-1alpha) and CCL4 (MIP-1beta) binding to cell surface CXCR4 and CCR5, respectively, resulting in the inhibition of chemokine-mediated intracellular calcium mobilization and chemotaxis. The effects were significantly enhanced by cotreatment with low-dose sphingomyelinase (SMase) (0.125 mU/ml), which produced little inhibitory effect by itself. CO and SMase treatment also inhibited HIV-1 infection through CXCR4, but not virus replication. Similar to the removal of membrane cholesterol, CO/SMase treatment induced conformation changes in the chemokine receptors as detected by differential loss in binding of epitope-specific monoclonal antibodies. We conclude that the native form of cholesterol with the hydroxyl group at C3 is critical to CXCR4 and CCR5 conformation and function.  相似文献   

18.
Glycosphingolipid (GSL)-enriched microdomains are used as cellular binding sites for various pathogens including viruses and bacteria. These attachment platforms are specifically associated with transducer molecules, so that the binding of host pathogens (or their toxins) to the cell surface may result in the activation of signal transduction pathways. In the intestinal epithelium, such pathogen-induced dysregulations of signal transduction can elicit a severe impairment of enterocytic functions. In this study, we demonstrate that the interaction of a bacterial toxin (cholera toxin) and a viral envelope glycoprotein (HIV-1 gp120) with the apical plasma membrane of intestinal cells is mediated by GSL-enriched microdomains that are associated with G regulatory proteins. These microbial proteins induce a GSL-dependent increase of intestinal fluid secretion by two mechanisms: activation of chloride secretion and inhibition of Na+-dependent glucose absorption. Taken together, these data support the view that GSL-enriched microdomains in the apical plasma membrane of enterocytes are involved in the regulation of intestinal functions.  相似文献   

19.
Glycosphingolipid (GSL)-enriched microdomains are used as cellular binding sites for various pathogens including viruses and bacteria. These attachment platforms are specifically associated with transducer molecules, so that the binding of host pathogens (or their toxins) to the cell surface may result in the activation of signal transduction pathways. In the intestinal epithelium, such pathogen-induced dysregulations of signal transduction can elicit a severe impairment of enterocytic functions. In this study, we demonstrate that the interaction of a bacterial toxin (cholera toxin) and a viral envelope glycoprotein (HIV-1 gp120) with the apical plasma membrane of intestinal cells is mediated by GSL-enriched microdomains that are associated with G regulatory proteins. These microbial proteins induce a GSL-dependent increase of intestinal fluid secretion by two mechanisms: activation of chloride secretion and inhibition of Na+ -dependent glucose absorption. Taken together, these data support the view that GSL-enriched microdomains in the apical plasma membrane of enterocytes are involved in the regulation of intestinal functions.  相似文献   

20.
Infection with human immunodeficiency virus type-1 (HIV-1) requires the presence of a CD4 molecule and chemokine receptors such as CXCR4 or CCR5 on the surface of target cells. However, it is still not clear how the virus enters the cells. Although CD4 was initially identified as the primary receptor for HIV-1, the expression of CD4 or one of the chemokine receptors alone is not sufficient to render susceptibility to infection with the virus. To ascertain whether or not adsorption of the virus needs charge-to-charge interaction between viral envelope and host cell membrane protein(s) and if binding alone promotes penetration of the virus into the cells, we have developed a chemically induced infection system targeting a CD4-negative and CXCR4-positive HeLa cell clone (N7 HeLa) which is usually not susceptible to infection with the LAI strain of HIV-1. Use of a poly-L-lysine (PLL)-coated culture plate to enhance the attachment of the virus to the cells made N7 HeLa cells infectable with HIV-1 at very low efficiency. PLL alone cannot fully substitute for the function of the CD4 molecule. However, trypsin-treated viruses, which have largely lost infectivity to CD4-positive MT-4 cells that are highly susceptible to HIV-1 infection, enhanced infectivity against N7 HeLa cells when the PLL-coated plate was used. These results provide evidence that infection with HIV-1 requires both high binding affinity between viruses and cells, and then needs a modification of the viral envelope such as cleavage of gp120/160 to enhance the infection, probably resulting in exposure of the hydrophobic fusion domain of gp41. HIV-1 infection of N7 HeLa cells was also enhanced by treatment with low pH, 12-O-tetradecanoylphorbol-13-acetate (TPA) and some factor(s) from the MT-4 cell culture supernatant. Not only tight viral adsorption with cleavage of the viral envelope but also some activated status of the cells may be required for sufficient HIV-1 infection in this artificial condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号