首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Analyses were made of the minor collagens synthesized by cultures of chondrocytes derived from 14-day chick embryo sterna. Comparisons were made between control cultures, cultures grown for 9 days in 5-bromo-2'-deoxyuridine (BrdU) and clones of chondrocytes grown to senescence. Separation of minor collagens from interstitial collagens was achieved by differential salt precipitation in the presence of carrier collagens in acid conditions. The precipitate at 0.9 M NaCl 0.5 M acetic acid from control cultures was shown by CNBr peptide analysis to contain only the alpha 1(II) chain of type II collagen, whereas after BrdU treatment or growth to senescence synthesis of only alpha 1(I) and alpha 2(I) chains occurred. The synthesis of type III collagen was not detected. Analysis of the precipitate at 2.0 M NaCl, 0.5 M HAc from control cultures demonstrated the synthesis of 1 alpha, 2 alpha and 3 alpha chains together with the synthesis of short chain (SC) collagen of Mr 43000 after pepsin digestion. After BrdU treatment or growth to senescence alpha chains were isolated which possessed the migration positions on polyacrylamide gel electrophoresis (PAGE), or the elution positions on CM-cellulose chromatography, of the alpha 1(V) and alpha 2(V) chains of type V collagen. In addition, for BrdU-treated but not for control cultures, intracellular immunofluorescent staining was observed with a monoclonal antibody which specifically recognizes an epitope present in the triple helix of type V collagen. Synthesis of short chain (SC) collagen was not detected after BrdU treatment or growth to senescence. These results suggest that chick chondrocytes grown in conditions known to cause switching of collagen synthesis from type II to type I collagen also undergo a switch from the synthesis of 1 alpha, 2 alpha and 3 alpha chains to the synthesis of the alpha 1(V) and alpha 2(V) chains of type V collagen. It appears that there are several cartilage-specific collagens which together undergo a regulatory control to the synthesis of collagens typical of other connective tissues.  相似文献   

3.
Collagen fibrils from the mesenteric connective sheath of the adult cockroach Periplaneta americana were extracted by enzymatic digestion with pepsin and were purified. Chromatographic studies and sodium dodecylsulfate electrophoresis revealed the presence of a single chain. It was demonstrated that the structure of this collagen could be represented by the formula (alpha)3. The amino acid composition is typical of collagens (one-third glycine, and a high imino acid content) and similar to that of type II. The carbohydrate content was high (8.8%), and the cyanogen bromide pattern was different from that of known collagens. The chains were linked by the stable intermolecular bond dihydroxylysinonorleucine. The banding patterns of the segment-long-spacing crystallites and of the reconstituted fibrils were similar to type I collagen. The molecular weight (Mr 280,000) and length (285 nm) were typical, but the denaturation temperature was high (38.5 degrees C). It was concluded that cockroach mesenteric collagen showed the characteristic features of invertebrate mesodermal collagens, except that of the thermal stability of the triple-helical structure.  相似文献   

4.
The hydroxylation of lysine in embryonic chick long bone and mandibular collagen was found to be approximately 3-fold greater than that of the collagens of adult animals. In contrast, no significant difference was found in extent of lysine hydroxylation of the collagens of frontal bones of embryos and postnatal animals. Both histochemical and biochemical evidence established that full thickness diaphyseal bone samples contained cartilage and, consequently, type II collagen which undoubtedly contributed to the higher hydroxylysine contents of young postnatal animals reported previously. DEAE ion exchange chromatography of the alpha 1(I) chains of lathyritic long bone and mandibular collagens isolated by carboxymethyl-cellulose ion exchange chromatography showed considerable heterogeneity, whereas the alpha 1(I) chains obtained from lathyritic frontal bone collagen did not. Three fractions of alpha 1(I) chains of long bones and mandibular collagen were isolated which differed significantly in their hydroxylysine contents. The relative proportion of the three peaks changed as a function of embryonic age and maturation: more of the alpha 1(I) chains with the highest hydroxylysine content was present in the collagen synthesized earliest during embryonic development. This is consistent with results which demonstrated that the collagens synthesized earliest during embryonic and postnatal development had the highest hydroxylysine contents.  相似文献   

5.
1. Type I-like collagens were isolated by limited pepsin digestion from various tissues of lamprey, a member of the cyclostomes. 2. Characterization of these collagens revealed the tissue-specific existence of two genetically distinct molecular species, each possessing the typical heterotrimeric nature of (alpha 1)2 alpha 2; one was designated skin collagen which existed in dermis and the other was designated body collagen which was distributed in muscle, intestine and cartilage. 3. The body collagen resembled invertebrate Type I-like collagens in many respects, whereas the skin collagen had a primordial form of vertebrate Type I collagen.  相似文献   

6.
The methods of quantitating the relative amounts of type I and III collagens in samples containing crosslinked collagen chains were evaluated using electrophoresis of alpha chains and cyanogen bromide peptides. The densitometry areas of the alpha I(I) chains from type I collagen and the alpha I(III) chains from type III collagen were reduced because of the failure of the crosslinked chains to dissociate. However, the ratios of the unit densitometry areas of these chains (area of chain/micrograms type I or III collagen loaded) were constant for type I and III collagens prepared from the same samples of tissue. A calibration factor, which was the same for dermis and mitral valve, was derived to convert the densitometry area ratios to the weight ratios of type I to III collagens. In contrast, the densitometry areas of the alpha I(I) CB8 (type I collagen marker) and the alpha I(III) CB5 (type III collagen marker) were not reduced by crosslinked collagen chains. A calibration factor was also derived to convert the ratios of the densitometry areas of the marker peptides to weight ratios of type I to type III collagens. Almost identical results were obtained when electrophoresis of alpha chains and of cyanogen bromide peptides was used with these calibration factors to quantitate the relative amounts of type I and III collagens in tissue extracts which contained different amounts of crosslinked chains.  相似文献   

7.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:15,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

8.
Tissue-specific assembly of fibers composed of the major collagen types I and II depends in part on the formation of heterotypic fibrils, using the quantitatively minor collagens V and XI. Here we report the identification of a new fibrillar-like collagen chain that is related to the fibrillar alpha1(V), alpha1(XI), and alpha2(XI) collagen polypeptides and which is coexpressed with type I collagen in the developing bone and eye. The new collagen was designated the alpha1(XXIV) chain and consists of a long triple helical domain flanked by typical propeptide-like sequences. The carboxyl propeptide is classic, with 8 conserved cysteine residues. The amino-terminal peptide contains a thrombospodin-N-terminal-like (TSP) motif and a highly charged segment interspersed with several tyrosine residues, like the fibril diameter-regulating collagen chains alpha1(V) and alpha1(XI). However, a short imperfection in the triple helix makes alpha1(XXIV) unique from other chains of the vertebrate fibrillar collagen family. The triple helical interruption and additional select features in both terminal peptides are common to the fibrillar chains of invertebrate organisms. Based on these data, we propose that collagen XXIV is an ancient molecule that may contribute to the regulation of type I collagen fibrillogenesis at specific anatomical locations during fetal development.  相似文献   

9.
Native type IV collagen was isolated from human placenta using pepsin solubilisation followed by fractional salt precipitation and chromatogarphic purification. The native preparation was characterised using amino acid analyses, disc gel electrophoresis, segment-long-spacing crystallites and immunological methods. Two component alpha chains were isolated with molecular weights of approximately 95000 and 70000. Cyanogen bromide digests of these chains indicated that they are not related to any of the known alpha chains of interstitial collagens or to the recently described collagen containing alphaA and alphaB chains. They are also not related to one another and are therefore probably fragments of two genetically distinct type IV collagen alpha chains.  相似文献   

10.
The degradation rates of type I, II, and III collagens by tadpole collagenase were studied by measuring the viscosity of the solution and the contents of alpha chains and alpha A chains of collagen, using SDS-polyacrylamide gel electrophoresis followed by densitometric analysis of the separated peptide bands. An empirical parameter was derived from the viscosity, and was shown to change in parallel with the content of alpha chains upon incubation with tadpole collagenase almost to the stage of complete digestion of collagen. Linear plots of parameters reflecting the concentration of intact collagen molecules against time were obtained, indicating the degradation to be pseudo-first order. The first-order rate constants for the degradation of Type I, II, and III collagens with tadpole collagenase at 30, 25, and 20 degrees C gave activation energies of 60 kcal/mol for Type III collagen and 40 kcal/mol for Type I and II collagens. There appeared to be a dependency of the degradation rates on the conformation of the collagen molecules (which is affected by temperature).  相似文献   

11.
As type IX collagen is a minor cartilage component, it is difficult to purify sufficient amounts of it from tissues or cultured cells to study its structure and function. Also, the conventional pepsin digestion used for fibrillar collagens cannot be utilized for purifying type IX collagen, because it contains several interruptions in its collagenous triple helix. A baculovirus expression system was used here to produce recombinant human type IX collagen by coinfecting insect cells with three viruses containing full-length cDNAs for the alpha1(IX), alpha2(IX), and alpha3(IX) collagen chains together with a double promoter virus for the alpha and beta subunits of human prolyl 4-hydroxylase. Correctly folded recombinant type IX collagen was secreted, consisting of the three alpha chains in a 1:1:1 ratio and showing the expected biphasic thermal melting profile. When the individual alpha chains were expressed, disulfide-bonded homotrimers and homodimers of the alpha chains were observed. When the cells were coinfected with the viruses for all three alpha chains, heterotrimers of alpha1(IX), alpha2(IX), and alpha3(IX) were detected in cell culture medium, and the other possible combinations were less prominent. When any two of the alpha chains were co-expressed, in addition to the homodimers and homotrimers, only alpha1(IX) and alpha3(IX) chains were disulfide-bonded. The results thus suggest that the most favored molecular species is an alpha1(IX)alpha2(IX)alpha3(IX) heterotrimer, but the chains are also able to form disulfide-bonded heterotrimers of alpha1(IX) and alpha3(IX) chains and (alpha1(IX))(3), (alpha2(IX))(3), and (alpha3(IX))(3) homotrimers.  相似文献   

12.
Biosynthetic and structural properties of endothelial cell type VIII collagen   总被引:16,自引:0,他引:16  
A highly unusual endothelial cell collagen (Sage, H., Pritzl, P., and Bornstein, P., (1980) Biochemistry 19, 5747-5755) has been characterized in greater detail. Pulse-chase experiments with bovine aortic endothelial cells revealed two nondisulfide-bonded collagens, of apparent chain Mr = 177,000 and 125,000, with an estimated synthesis and secretion time of 75 min. Stepwise, quantitative processing to stable lower molecular weight forms as described for type I procollagen was not observed. Endothelial collagen was secreted over a temperature range of 24-37 degrees C and, prior to heat denaturation, did not display affinity for a gelatin-binding fragment of fibronectin coupled to Sepharose. The presence of a pepsin-resistant domain (Mr = 50,000) in both the soluble and cell layer-associated forms of this protein was shown by ion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Endothelial collagen was cleaved by vertebrate collagenase into several discrete fragments that differed in molecular weight from the characteristic alpha A and alpha B fragments generated from the interstitial collagens. Nontriple helical domains corresponding to the NH2- and COOH-terminal propeptides of other procollagen types were not found after incubation of endothelial collagen with bacterial collagenase. Additional evidence for the lack of extended noncollagenous sequences was provided by studies with mast cell proteases, which convert native procollagen to collagen but are unreactive toward native interstitial collagens. Endothelial collagen was not cleaved by these enzymes at 37 degrees C, but, as observed for interstitial collagen alpha chains, required prior heating at elevated temperatures for cleavage to occur. In view of this unique set of structural characteristics, and a distribution that is not restricted to the endothelium, we have designated this protein as type VIII collagen.  相似文献   

13.
Type I procollagen was purified from cultured fibroblasts of a proband with a lethal variant of osteogenesis imperfecta. The protein was a mixture of normal procollagen and mutated procollagens containing a substitution of cysteine for glycine in either one pro alpha 1(I) chain or both pro alpha 1(I) chains, some or all of which were disulfide-linked through the cysteine at position alpha 1-748. The procollagen was then examined in a system for generating collagen fibrils de novo by cleavage of the pCcollagen to collagen with procollagen C-proteinase [Kadler et al. (1987) J. Biol. Chem. 262, 15696-15701]. The mutated collagens and normal collagens were found to form copolymers under a variety of experimental conditions. With two preparations of the protein that had a high content of alpha 1(I) chains disulfide-linked through the cysteine alpha 1-748, all the large structures formed had a distinctive, highly branched morphology that met one of the formal criteria for a fractal. Preparations with a lower content of disulfide-linked alpha 1(I) chains formed fibrils that were 4 times the diameter of control fibrils. The formation of copolymers was also demonstrated by the observation that the presence of mutated collagens decreased the rate of incorporation of normal collagen into fibrils. In addition, the solution-phase concentration at equilibrium of mixtures of mutated and normal collagens was 5-10-fold greater than that of normal collagen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Characterization of pepsin-solubilized bovine heart-valve collagen.   总被引:2,自引:0,他引:2       下载免费PDF全文
Collagens extracted from heart valves by using limited pepsin digestion were fractionated by differential salt precipitation. Collagen types were identified by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, amino acid analysis and cleavage with CNBr. Heart-valve collagen was heterogeneous in nature, consisting of a mixture of type-I and type-III collagens. The identity of type-III collagen was established on the basis of (a) insolubility in 1.7 M-NaC1 at neutral pH, (b) behaviour of this collagen fraction on gel electrophoresis under reducing and non-reducing conditions, (c) amino acid analysis showing a hydroxyproline/proline ratio greater than 1, and (d) profile of CNBr peptides on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showing a peak characteristic for type-III collagen containing peptides alpha1(III)CB8 and alpha1(III)CB3. In addition to types-I and -III collagen, a collagen polypeptide not previously described in heart valves was identified. This polypeptide represented approx. 30% of the collagen fraction precipitated at 4.0 M-NaCl, it migrated between beta- and alpha1-collagen chains on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and its electrophoretic behaviour was not affected by disulphide-bond reduction. All collagen fractions from the heart valves contained increased amounts of hydroxylysine when compared with type-I and -III collagens from other tissues. The presence of beta- and gamma-chains and higher aggregates in pepsin-solubilized collagen indicated that these collagens were highly cross-linked and suggested that some of these cross-links involved the triple-helical regions of the molecule. It is likely that the higher hydroxylysine content of heart-valve collagen is responsible for the high degree of intermolecular cross-linking and may be the result of an adaptive mechanism for the specialized function of these tissues.  相似文献   

15.
The normal chemical features of peripheral nerve collagens were determined on postmortem, histologically normal adult human femoral nerve. 1. Genetically distinct type I, [alpha1(I)2]alpha2, and type III, [alpha1(III)]3, were isolated by differential salt precipitation and the component subunit chains, alphal(I), alpha2 and alphal(III) were obtained by ion-exchange chromatography and gel filtration. 2. The molecular weight of alphal(I) and alpha2 of type I collagen was 95 000 and that for type III was 280 000. Reduction of type III with dithiothreitol yielded expected alpha1(III) chains of 95 000 molecular weight. 3. The amino acid composition of the three collagen chains, alpha1(I), alpha2, and alpha1(III), was the same as previously reported values for the corresponding chains from human skin except for slightly elevated hydroxylysine content. 4. Peripheral nerve collagen was found to contain 81% type I collagen and 19% type III. These results indicate that peripheral nerve collagen characteristics closely simulate that of human skin and differ from that of human aorta and other parenchymal organs. These data will permit a chemical analysis for possible abnormalities of peripheral nerve collagen in various neurogenic disorders.  相似文献   

16.
17.
H Limeback  J Sodek  J Aubin 《Biochemistry》1982,21(19):4720-4729
The collagens synthesized by Chinese hamster ovary cells have been isolated and characterized. Although these cells produce very small amounts of collagen, at least five distinct collagenous chains could be identified from radiolabeled media and cell extracts after limited pepsin digestion. Two chains were characterized as alpha 1(V) and alpha 2(V), based on electrophoretic mobility, resistance to vertebrate collagenase, chromatographic properties on carboxymethylcellulose, and cyanogen bromide peptide patterns. Two smaller collagenous proteins (Mr 34000 and 37000) were also isolated by carboxymethylcellulose chromatography and characterized by cyanogen bromide digestion patterns. These collagens showed similarities to type IV collagen fragments but may be unique to Chinese hamster ovary cells. A colcemid-resistant mutant of Chinese hamster ovary cells designated CMR795 [Ling, V., Aubin, J.E., Chase, A., & Sarangi, F. (1979) Cell (Cambridge, Mass.) 18, 423-430] was found to synthesize the same collagen chains but in different proportions. In the wild-type cells colcemid (0.05-0.1 microgram/mL) reduced the amount of type V collagen in the culture media but had little effect on the other collagen type, whereas the type V collagen reduction was less pronounced in the CMR795 cells treated with the same concentrations of colcemid. Dibutyryladenosine cyclic monophosphate caused a fibroblast-like "reverse transformation" of the Chinese hamster ovary cells similar to that described previously [Hsie, A.W., & Puck, T. T. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 358-361]. However, collagen synthesis was increased only slightly. Furthermore, no apparent alteration in the types of collagens synthesized was detected.  相似文献   

18.
Invertebrates possess unique collagen-containing connective tissue elements, the biochemistry of which is not clearly understood. We previously reported the occurrence of a novel heterotrimeric type V/XI like collagen in the cranial cartilage of the cuttlefish Sepia officinalis. We report here the purification of the three chains by ion exchange chromatography and the physicochemical characteristics of this collagen. This collagen shared substantial similarity to the collagen purified from the cornea of S. officinalis, with respect to chain composition, cyanogen bromide peptide profile and amino acid composition. The mobility of the C3 chain was retarded in the corneal collagen, which also had an increased glycine content and a smaller ratio of hydroxylysine to lysine, together with a reduction in bound carbohydrates. The cartilage collagen had a higher denaturation temperature than corneal collagen. As observed by transmission electron microscopy of reconstituted fibrils, the heterotrimeric invertebrate collagen formed fibrils of no apparent periodicities as opposed to the regular 64-nm banding pattern of milk shark (Rhizoprionodon acutus) cartilage collagen. This is also the first report on the molecular species of collagen in an invertebrate cornea. Our results strongly support the functioning of minor vertebrate collagens as major collagens in some invertebrates, close similarity of collagens in two tissues with different functions and would hold significance to our understanding of collagen polymorphism and the evolution of the extracellular matrix.  相似文献   

19.
H Sage  P Bornstein 《Biochemistry》1979,18(17):3815-3822
A novel collagen chain, termed alpha C, has been isolated from human placenta by limited pepsin digestion. The collagen containing the alpha C chain copurifies with placental AB collagen during selective salt precipitation but is virtually absent from fetal birth membranes, which contain relatively larger amounts of AB. Both native AB and alpha C-containing collagens are resistant to human skin collagenase under conditions that support cleavage of type I by greater than 90%. The alpha C chain was separated from alpha B by phosphocellulose chromatography and subsequently from alpha P by chromatography on CM-cellulose. Its amino acid composition is distinct from alpha A and alha B although all three chains posses compositional features in common; the carbohydrate content of the alpha C chain was intermediate between those of alpha A and alpha B. Analysis by NaDodSO4-polyacrylamide gel electrophoresis of peptides produced by CNBr cleavage and by limited digestion with the enzyme mast cell protease indicated different and unique products for the alpha A, alpha B, and alpha C chains. The data support the existence of another collagen chain which is related to the alpha A and alpha B chains but which is structurally unique. The proteins containing these chains may in turn comprise a subfamily of collagen isotypes which represents a divergence from and/or specialization of the type IV basement membrane collagens.  相似文献   

20.
Samples (1-2mg) of purified human type I, II and III collagens and alpha1(I) and alpha2 chains were digested with clostridiopeptidase A and the released peptides analysed by ion-exchange high-pressure liquid chromatography. Specific 'fingerprints' were produced for each type of collagen. The reproducible nature of these 'fingerprints' and the reconstitution of the type I 'fingerprint' from the 'fingerprints' of the component alpha1(I) and alpha2 chains showed that the specificity of these 'fingerprints' was related to the primary structure of each type of collagen. In addition, some of the differences observed between the 'fingerprints' of the alpha1(I) and alpha2 chains of type I collagen were shown to be suitable for the quantitative analysis of these chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号