首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Wang  D S Beattie 《Biochemistry》1992,31(36):8455-8459
In a recent study [Wang & Beattie (1991) Arch. Biochem. Biophys. 291, 363-370], we reported that dicyclohexylcarbodiimide (DCCD) inhibited proton translocation in the cytochrome bf complex reconstituted into proteoliposomes and was bound selectively to cytochrome b6. To establish the site of binding of DCCD on cytochrome b6, the cytochrome bf complex labeled with [14C]DCCD was selectively digested with chymotrypsin and trypsin. A 17-kDa fragment containing radioactive DCCD and the heme moiety was obtained after chymotrypsin digestion, while a 12.5-kDa fragment containing both radioactive DCCD and the heme moiety was obtained after trypsin digestion, suggesting that the site of DCCD binding might be on aspartate-140, aspartate-155, or glutamate-166. Extensive digestion of cytochrome b6 isolated from a [14C]DCCD-labeled cytochrome bf complex with trypsin followed by isolation and sequencing of two radioactive peptides obtained revealed that DCCD is bound at either residue aspartate-155 or residue glutamate-166 localized in amphipathic extramembranous helix IV. In addition, the cytochrome bf complex labeled with [14C]DCCD was reconstituted into liposomes and digested with trypsin. Three fragments of 9.3, 10.5, and 11.5 kDa were obtained, suggesting that the four-helix model for the topography of cytochrome b6 in the membrane is correct.  相似文献   

2.
To determine the intermolecular cross-linking site on the primary structure sarcoplasmic reticulum (SR) Ca-ATPase, the conditions for the specific binding of 14C-labeled 1,4-phenylene bis maleimide (PBM) or 14C-labeled N-ethylmaleimide (NEM) to the ATPase were explored. SR vesicles were preincubated with nonradioactive PBM in the presence of 1 mM vanadate for 1 h, then washed by centrifugation to remove free PBM and vanadate. When the pretreated SR vesicles were allowed to react with 1 mM [14C]PBM in the presence of 1 mM AMPPNP, the amount of [14C]PBM incorporated into the ATPase increased with time in parallel with the formation of dimeric ATPase and reached the maximum labeling density of 1 mol of [14C]PBM per mol of dimeric ATPase at 40 min after the start of the reaction. When the pretreated SR vesicles were allowed to react with 2 mM [14C]NEM in the absence of AMPPNP, a maximum of about 2 mol of NEM was bound per mol of the ATPase monomer. The labeling density of [14C]NEM decreased from 2 to 1 mol per mol of the ATPase when the SR vesicles were allowed to react with [14C]NEM in the presence of AMPPNP. From the analysis of the amino acid composition of the two major [14C]NEM-labeled peptides isolated from the thermolytic digest of the enzyme after the reaction of SR with [14C]NEM in the absence of AMPPNP, we deduced that [14C]NEM was incorporated into Cys377 and Cys614. On the other hand, the labeling of SR in the presence of AMPPNP resulted in inhibition of the [14C]NEM binding to Cys614, leaving Cys377 unaltered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Interaction of N,N'-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30-65% inactivation over a concentration range of 5-50 microM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5 X 10(5) M-1 X min(-1). The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

4.
Iodoacetamide (IAA) and its fluorescent derivative, 5-(2-iodoacetamidoethyl) amino-naphthalene-1-sulfonate (IAEDANS) specifically bind to a site on the C-terminal half of sarcoplasmic reticulum (SR) Ca2+,Mg2+-ATPase. The location of this specific binding site was identified. SR membranes were treated with 150 microM [14C]IAA at pH 7.0 and 30 degrees C. One mole of IAA per mole of ATPase was bound in 6 h without affecting the Ca2+-transport activity. [14C]IAA-labeled SR membranes were cleaved with BrCN, and 14C-labeled peptide fragments were separated by Sephadex LH-60 chromatography and then digested further with trypsin. A radioactive peptide (Ala-Cys 674-Cys-Phe-Ala-Arg) was purified by Sephadex LH-20 chromatography and C18 reversed phase HPLC (Cys denotes the [14C]IAA-binding site). IAEDANS-labeling was carried out by reacting SR membranes with 50 microM IAEDANS for 5 h, at pH 7.0 and 30 degrees C. A fluorescent peptide was successfully purified by the same procedures as for the IAA-labeled peptide, and the amino acid sequence analysis of this peptide revealed that the IAEDANS labeling site was identical with the IAA binding site.  相似文献   

5.
The proton pump (H+-ATPase) found in the plasma membrane of the fungus Neurospora crassa is inactivated by dicyclohexylcarbodiimide (DCCD). Kinetic and labeling experiments have suggested that inactivation at 0 degrees C results from the covalent attachment of DCCD to a single site in the Mr = 100,000 catalytic subunit (Sussman, M. R., and Slayman, C. W. (1983) J. Biol. Chem. 258, 1839-1843). In the present study, when [14C]DCCD-labeled enzyme was treated with the cleavage reagent, N-bromosuccinimide, a single major radioactive peptide fragment migrating at about Mr = 5,300 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was produced. The fragment was coupled to glass beads and partially sequenced by automated solid-phase Edman degradation at the amino terminus and at an internal tryptic cleavage site. By comparison to the DNA-derived amino acid sequence for the entire Mr = 100,000 polypeptide (Hager, K., and Slayman, C. W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 7693-7697), the fragment has been identified as arising by cleavage at tyrosine 100 and tryptophan 141. Covalently incorporated [14C]DCCD was released at a position corresponding to glutamate 129. The DCCD-reactive glutamate is located in the middle of the first of eight predicted transmembrane sequences. When the sequence surrounding the DCCD site is compared to that surrounding the DCCD-reactive residue of two other proton pumps, the F0F1-ATPase and cytochrome c oxidase, no homology is apparent apart from an abundance of hydrophobic amino acids.  相似文献   

6.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1983,723(2):150-159
Interaction of N,N′-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30–65% inactivation over a concentration range of 5–50 μM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5·105 M?1·min?1. The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

7.
The Ca(2+)-ATPase of sarcoplasmic reticulum reacts with N-cyclohexyl-N'-(4-dimethylamino-1-naphthyl) carbodiimide (NCD4) yielding a fluorescence labeling that interferes with calcium binding to activating and transport sites of the enzyme and, thereby, with Ca(2+)-dependent ATPase activity. On the other hand, the catalytic site does not appear altered, as revealed by the normal occurrence of Ca(2+)-independent reactions, such as enzyme phosphorylation with Pi in the reverse direction of the catalytic cycle. This reaction is not inhibited by Ca2+ in the labeled enzyme, while it is inhibited in the native enzyme. The NCD4 reaction which is involved in functional inactivation occurs in the membrane-bound portion of the ATPase. Sodium dodecyl sulfate solubilization of hydrophobic peptides, electrophoresis, and microsequencing of transblotted electrophoretic bands revealed that the fluorescent NCD4 label resides in a segment of tryptic fragment A1, intervening between Glu231 and Glu309. This segment includes two transmembrane helices, and does not include the domain involved in the phosphoryl transfer reaction during catalytic activity. This specific labeling does not occur when the NCD4 derivatization procedure is carried out in the presence of Ca2+ concentrations that also prevent functional inactivation. Fluorescence characterization by steady state and intensity decay measurements shows only negligible energy transfer between the NCD4 label and fluorescein isothiocyanate label of Lys515, indicating that the NCD4 label is unlikely to reside within the extramembranous region of the ATPase. On the other hand, the fluorescence emission of intrinsic tryptophan residues clustered within or near the transmembrane region of the ATPase, is distinctly affected by NCD4 label specifically bound to the ATPase, and NCD4 label nonspecifically bound to the sarcoplasmic reticulum membrane. The combined sequencing and spectroscopic observations indicate that derivatization with NCD4 induces a perturbation within or near the transmembrane region of the ATPase (at a relatively large distance from the catalytic site) that interferes with specific calcium binding. This is in agreement with experiments (Clarke et al., 1989) demonstrating that mutations of any of six amino acids within the transmembrane region of the ATPase interfere with enzyme activation by Ca2+.  相似文献   

8.
The (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase (Ca2+-transporting), EC 3.6.1.38) protein of rabbit skeletal sarcoplasmic reticulum (SR) rapidly incorporated 2 mol of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) per 10(5) g of protein with little change in the Ca2+-dependent ATPase activity. When 2 additional mol of the reagent were bound the Ca2+-ATPase, activity was inhibited. The same pattern was found for modified intact SR and the Ca2+ uptake ability was inhibited. MgATP, CaATP and MgADP protected the Ca2+-ATPase activity concurrent with a decrease of about 1 mol of the NBD group per 10(5) g protein, but the Ca2+ uptake ability was not protected. Calcium alone had no effect on the modification. The modified ATPase protein or SR formed non-serial oligomers or aggregates, but the ATPase protein remained the predominant species present. In the presence of MgATP, oligomer formation was reduced partially but the major changes in the Ca2+-ATPase activity were due to the modification of the ATPase monomer. Thiolysis of the NBD-ATPase protein with dithiothreitol did not restore the Ca2+-ATPase activity, although more than 1 mol of the NBD group was removed from cysteine residues. Cysteine residues were modified in the NBD-ATPase protein or SR when the enzyme activity was inhibited. Trypsin digestion of NBD-SR or its ATPase protein released the A, B, A1, and A2 fragments. The A fragment and its subfragment A2 contained most of the label. Substrate MgATP protection studies showed that the A1 and A2 fragments were involved in maintaining the Ca2+-ATPase activity. Reagent-induced conformational changes of these fragments rather than direct active site group labeling accounted for the loss of ATPase activity.  相似文献   

9.
1. Incubation of soluble spinach Coupling Factor 1 (CF1) with dicyclohexylcarbodiimide (DCCD) results in the inactivation of the ATPase. The DCCD inactivation is time- and concentration-dependent. Complete inactivation of the CF1-ATPase activity requires the binding of 2 mol of DCCD/mol of CF1. The binding sites of DCCD are located on the beta subunit of CF1. 2. DCCD modification of soluble CF1 eliminates one adenine nucleotide binding site which is exposed by dithiothreitol activation or by incubation with tentoxin. The inactivation of both the ATPase activity and the adenine nucleotide binding site are pH-dependent. The inactivation of both the ATPase activity and the adenine nucleotide binding site are pH-dependent. Half-maximal inhibition occurs at about pH 7.5. 3. The DCCD-modified CF1, reconstituted with EDTA-treated chloroplasts, is fully active is restoring proton uptake but not in restoring ATP synthesis or light-dependent adenine nucleotide exchange.  相似文献   

10.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

11.
Purified mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH) is inhibited by N,N'-dicyclohexylcarbodiimide (DCCD), and NAD(H) protects the enzyme against this inhibition [Phelps, D.C., and Hatefi, Y. (1984) Biochemistry 23, 4475-4480]. The tryptic digest of TH treated with [14C]DCCD showed a single radioactive peak upon FPLC chromatography. This radioactive peak was absent from tryptic digests of TH treated with [14C]DCCD in the presence of NADH. Sequence analysis of the radioactive peak showed that it contained two peptides, one derived from the other as a result of incomplete cleavage by trypsin of a lysyl-glutamyl bond. After further digestion with Staphylococcus V8 protease, the smaller radioactive fragment was isolated and sequenced. The amino acid sequence of this fragment, as determined by manual Edman degradation, was Ala-Glu-Met-Lys. The second residue was modified. Amino acid analysis and sequence studies on the radioactive tryptic peptide mixture indicated that the sequence around the DCCD-modified residue was Glu-Met-Ser-Lys-Glu-Phe-Ile-Glu-Ala-Glu-Met-Lys. In other studies, this sequence has been found in the amino acid sequence of TH as predicted from the corresponding cDNA. The DCCD-modified peptide is near the site of NAD(H) binding, as labeled with radioactive p-fluorosulfonylbenzoyl-5'-adenosine. Furthermore, there is a high degree of homology in this region between the amino acid sequences of the bovine heart TH and the alpha subunit of the Escherichia coli TH.  相似文献   

12.
The polypeptide composition of the NO-3-sensitive H+-ATPase of vacuolar membrane (tonoplast) vesicles isolated from red beet (Beta vulgaris L.) storage root was investigated by affinity labeling with [alpha-32P]3-O-(4-benzoyl)benzoyladenosine 5'-triphosphate [( alpha-32P]BzATP) and [14C]N,N'-dicyclohexylcarbodiimide [( 14C]DCCD). The photoactive affinity analog of ATP, BzATP, is a potent inhibitor of the tonoplast ATPase (apparent KI = 11 microM) and the photolysis of [alpha-32P]BzATP in the presence of native tonoplast yields one major 32P-labeled polypeptide of 57 kDa. Photoincorporation into the 57-kDa polypeptide shows saturation with respect to [alpha-32P]BzATP concentration and is blocked by ATP. [14C]DCCD, a hydrophobic carboxyl reagent and potent irreversible inhibitor of the tonoplast ATPase (k50 = 20 microM) labels a 16-kDa polypeptide in native tonoplast. The tonoplast ATPase is purified approximately 12-fold by Triton X-100 solubilization and Sepharose 4B chromatography. Partial purification results in the enrichment of two prominent polypeptides of 67 and 57 kDa. Solubilization, chromatography, and sodium dodecylsulfate-polyacrylamide gel electrophoresis of tonoplast labeled with [alpha-32P]BzATP or [14C]DCCD results in co-purification of the 57- and 16-kDa labeled polypeptides with ATPase activity. It is concluded that the tonoplast H+-ATPase is a multimer containing structurally distinct BzATP- and DCCD-binding subunits of 57 and 16 kDa, respectively. The data also suggest the association of a 67-kDA polypeptide with the ATPase.  相似文献   

13.
S Hua  G Inesi 《Biophysical journal》1997,73(4):2149-2155
Sarcoplasmic reticulum (SR) Ca2+ ATPase was derivatized with 4,4'-diisothiocyanatostilbene-2,2'-sulfonic acid (DIDS), and complete enzyme inactivation was produced with a molecular stoichiometry of one DIDS per ATPase. It was determined by peptide analysis and sequencing that Lys492 and Lys515 were the ATPase residues derivatized by DIDS. Lack of electrophoretic resolution of the two peptide fragments that result from a single tryptic cut at Arg505 demonstrated that the two derivatized residues were cross-linked. Cross-linking of Lys492 and Lys515 by DIDS interfered with ATPase utilization of both ATP and p-nitrophenyl phosphate substrates, whereas derivatization of only Lys515 with fluorescein isothiocyanate interfered with ATPase utilization of ATP but not of p-nitrophenyl phosphate. Cross-linking with DIDS implies a distance of approximately 13 A between Lys492 and Lys515, which corresponds to the length of ATP bound in an extended configuration. Therefore, within the groove of the nucleotide binding domain, the ATP substrate is positioned with the adenosine moiety near Lys515 and its terminal phosphate near Lys492.  相似文献   

14.
M Satre  M Bof  J P Issartel  P V Vignais 《Biochemistry》1982,21(19):4772-4776
N,N'-Dicyclohexylcarbodiimide (DCCD) covalently binds to the beta subunit of Escherichia coli F1-ATPase (BF1). The ATPase activity is fully inhibited when 1 mol of DCCD is bound/mol of BF1, in spite of the fact that BF1 contains several beta subunits [Satre, M., Lunardi, J., Pougeois, R., & Vignais, P.V. (1979) Biochemistry 18, 3134-3140]. Advantage was taken of the reactivity of DCCD with respect to BF1 to determine the exact stoichiometry of the beta subunits in BF1. Two methods were used. The first one was based on the fact that modification of the beta subunit by DCCD results in the disappearance of one negative charge, due to the binding of DCCD to a carboxyl group of the beta subunit. The nonmodified and the modified beta subunits were separated by electrofocusing, and the percentage of modified beta subunits was assessed as a function of the percentage of ATPase inactivation. The second method relied on direct comparison, after inactivation of BF1 by [14C]DCCD, of the specific radioactivities of the whole BF1 and the isolated beta subunits. Both methods indicate that each molecule of BF1 contains three beta subunits.  相似文献   

15.
The calmodulin-binding domain on microtubule-associated protein 2   总被引:2,自引:0,他引:2  
Microtubule-associated protein 2 (MAP2) binds calmodulin with a stoichiometry approaching 1-1.5 mol of calmodulin/mol of MAP2 in the presence of calcium ion. The calmodulin-binding domain(s) of MAP2 were probed by cross-linking 125I-calmodulin with partially digested MAP2, by limited digestion of the preformed 125I-calmodulin-MAP2 adduct, and by cross-linking 125I-calmodulin with the projection- and assembly-promoting portions of MAP2. Cross-linking 125I-calmodulin with partially digested MAP2 resulted in radioactive adducts of approximately 300, approximately 235, approximately 205, approximately 58, and approximately 40 kDa. The radioactive adducts with smaller molecular mass became prominent with increasing time of digestion concomitant with loss of those with higher molecular size. Limited chymotryptic digestion of preformed 125I-calmodulin-MAP2 adducts also produced a approximately 58-kDa radioactive band followed later by a approximately 40-kDa band. Brief chymotryptic digestion and subsequent centrifugation of microtubules preformed with pure tubulin and MAP2 permitted separation of microtubule-bound MAP2 fragments (molecular mass = approximately 215, approximately 180, and approximately 36 kDa) from unbound fragments (molecular mass = approximately 240, approximately 180, and approximately 140 kDa). 125I-Calmodulin cross-linked only with the microtubule-bound MAP2 fragments (forming mainly the approximately 58-kDa adduct) and not with unbound MAP2 fragments. Since the apparent molecular size of calmodulin is approximately 21 kDa on these sodium dodecyl sulfate-polyacrylamide gels, the results indicate that partial digestion of MAP2 by chymotrypsin produces a approximately 37-kDa fragment which can be further degraded to a approximately 20-kDa fragment. The approximately 37-kDa fragment that is labeled corresponds to the previously identified assembly-promoting fragment that attaches to the microtubule.  相似文献   

16.
The addition of a carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD) to thiamine-binding protein isolated from rice bran resulted in a remarkable loss of its binding activity with [14C]thiamine. Thiamine and chloroethylthiamine substantially protected the protein against inactivation by DCCD, whereas thiamine phosphates did not. Another carboxyl reagent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) also inactivated rice bran thiamine-binding protein. Inactivation of the thiamine-binding protein was accompanied by covalent binding of DCCD to the protein as shown by the use of [14C]DCCD. The binding of [14C]DCCD to the thiamine-binding protein was specific, and significantly inhibited by the addition of thiamine. The loss of thiamine-binding activity was proportional to the specific binding of [14C]DCCD. For complete inactivation of the thiamine-binding activity, the binding of 2.46 mol of [14C]DCCD per mol of thiamine-binding protein was required. Furthermore, limited proteolysis of the binding protein by trypsin yielded two polypeptides with molecular weights of 35,000 (large polypeptide) and 12,500 (small polypeptide) which were separated by SDS-polyacrylamide gel electrophoresis. The binding sites of [14C]DCCD were found to be located on the large polypeptide. These results suggest that a specific carboxyl residue in the large polypeptide releasable from rice bran thiamine-binding protein by trypsin digestion when modified by DCCD is involved in the binding of thiamine.  相似文献   

17.
K H Cheng  J R Lepock 《Biochemistry》1992,31(16):4074-4080
Calcium uptake by rabbit skeletal sarcoplasmic reticulum (SR) is inhibited with an effective inactivation temperature (TI) of 37 degrees C in EGTA with no effect on ATPase activity. Since the Ca-ATPase denatures at a much higher temperature (49 degrees C) in EGTA, this suggests that a small or localized conformational change of the Ca-ATPase at 37 degrees C results in inability to accumulate calcium by the SR. Using a fluorescent analogue of dicyclohexylcarbodiimide, N-cyclohexyl-N'-[4-(dimethylamino)-alpha-naphthyl]-carbodiimide (NCD-4), the region of the calcium binding sites of the SR Ca-ATPase was labeled. Steady-state and frequency-resolved fluorescence measurements were subsequently performed on the NCD-4-labeled Ca-ATPase. Site-specific information pertaining to the hydrophobicity and segmental flexibility of the region of the calcium binding sites was derived from the steady-state fluorescence intensity, lifetime, and rotational rate of the covalently bound NCD-4 label as a function of temperature (0-50 degrees C). A reversible transition at approximately 15 degrees C and an irreversible transition at approximately 35 degrees C were deduced from the measured fluorescence parameters. The low-temperature transition agrees with the previously observed break in the Arrhenius plot of ATPase activity of the native Ca-ATPase at 15-20 degrees C. The high-temperature transition conforms well with the conformational transition, resulting in uncoupling of Ca translocation from ATP hydrolysis as predicted from the irreversible inactivation of Ca uptake at 31-37 degrees C in 1 mM EGTA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was used to probe the structure and function of the vacuolar H+-translocating ATPase from oat roots (Avena sativa var. Lang). The second-order rate constant for DCCD inhibition was inversely related to the concentration of membrane, indicating that DCCD reached the inhibitory site by concentrating in the hydrophobic environment. [14C]DCCD preferentially labeled a 16-kDa polypeptide of tonoplast vesicles, and the amount of [14C]DCCD bound to the 16-kDa peptide was directly proportional to inhibition of ATPase activity. A 16-kDa polypeptide had previously been shown to be part of the purified tonoplast ATPase. As predicted from the observed noncooperative inhibition, binding studies showed that 1 mol of DCCD was bound per mol of ATPase when the enzyme was completely inactivated. The DCCD-binding 16-kDa polypeptide was purified 12-fold by chloroform/methanol extraction. This protein was thus classified as a proteolipid, and its identity as part of the ATPase was confirmed by positive reaction with the antibody to the purified ATPase on immunoblots. From the purification studies, we estimated that the 16-kDa subunit was present in multiple (4-8) copies/holoenzyme. The purification of the proteolipid is a first step towards testing its proposed role in H+ translocation.  相似文献   

19.
Summary Proteolytic digestion of sarcoplasmic reticulum vesicles with trypsin has been used as a structural modification with which to examine the interaction between the ATP hydrolysis site and calcium transport sites of the (Ca2++Mg2+)-ATPase. The kinetics of trypsin fragmentation were examined and the time course of fragment production compared with ATP hydrolytic and calcium uptake activities of the digested vesicles. The initial cleavage (TD 1) of the native ATPase to A and B peptides has no effect on the functional integrity of the enzyme, hydrolytic and transport activities remaining at the levels of the undigested control. Concomitant with the second tryptic cleavage (TD 2) of the A peptide to A1 and A2 fragments, calcium transport is inhibited. Kinetic analysis demonstrates that the rate constant for inhibition of calcium uptake is correlated with the rate constant of a fragment disappearance. Both Ca2+-dependent and total ATPase activities are unaffected by this second cleavage. Passive loading of vesicles with calcium and subsequent efflux measurements show that transport inhibition is not due to increased permeability of the membrane to calcium even at substantial extents of digestion. Steady-state levels of acidstable phosphoenzyme are unaffected by either TD 1 or TD 2, indicating that uncoupling of the hydrolytic and transport functions does not increase the turnover rate of the enzyme and that TD 2 does not change the essential characteristics of the ATP hydrolysis site. Sarcoplasmic reticulum (SR) vesicles were examined for the presence of tightly bound nucleotides and are shown to contain 2.8–3.0 nmol ATP and 2.6–2.7 nmol ADP per mg SR protein. The ADP content of SR remains essentially unchanged with TD 1 cleavage of the ATPase enzyme to A and B peptides, but declines upon TD 2 in parallel with the digestion of the A fragment and the loss of calcium uptake activity of the vesicles. The ATP content is essentially constant throughout the course of trypsin digestion. The results are discussed in terms of current models of the SR calcium pump and the molecular mechanism of energy transduction.  相似文献   

20.
J A Buechler  S S Taylor 《Biochemistry》1988,27(19):7356-7361
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation [Toner-Webb, J., & Taylor, S. S. (1987) Biochemistry 26, 7371]. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of [14C]glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号