首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyadenylated RNA prepared from neonatal rat muscle was translated in a rabbit reticulocyte cell-free system. Two sarcoplasmic reticulum proteins, the Ca2+ + Mg2+-dependent adenosine triphosphatase (ATPase) and calsequestrin, were isolated from the translation mixture by immunoprecipitation, followed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The [35S]methionine-labeled translation products were characterized by molecular weight, peptide mapping, and NH2-terminal sequence analysis. The ATPase synthesized in the cell-free system was found to have the same molecular weight (Mr = 100,000) and [35S]-methionine-labeled peptide map as the mature ATPase. The methionine residue present at the NH2 terminus of the mature ATPase was donated by initiator methionyl-tRNArMet and it became acetylated during translation. These results suggest that the ATPase was synthesized without an NH2-terminal signal sequence. Calsequestrin (Mr - 63,000) was synthesized as a higher molecular weight precursor (Mr = 66,000) that contained an additional [35S]methionine-labeled peptide when compared to mature calsequestrin. The NH2-terminal sequence of the precursor was different from the mature protein. The precursor was processed to a polypeptide with a molecular weight identical with mature calsequestrin when microsomal membranes prepared from canine pancreas were included during translation. These results show that calsequestrin is synthesized with an NH2-terminal signal sequence that is removed during translation. These data add to the evidence that the ATPase and calsequestrin follow distinctly different biosynthetic pathways, even though, ultimately, they are both located in the same membrane.  相似文献   

2.
Temporal patterns of biosynthesis of the sarcoplasmic reticulum protein, calsequestrin, were analyzed and compared with rates of ATPase synthesis in primary cultures of rat skeletal muscle cells. Rates of synthesis were measured by the incorporation of radioactive leucine into the isolated proteins. Cells at various stages of differentiation were incubated for 2 h with tritium-labeled leucine and extracted with detergent. The extracts were incubated with antibodies specific against calsequestrin or the ATPase and immunoprecipitates were separated by disc gel electrophoresis. Incorporation of radioactivity into bands identified as calsequestrin or the ATPase was analyzed by counting of gel slices. In Dulbecco's modified Eagles medium (DME medium) containing 0.1 volume of horse serum and 0.005 volume of chick embryo extract, the cells began to fuse after about 50 h in culture, forming multinucleated myotubes. Calsequestrin synthesis was barely detectable after 24 h in culture. After 44 h, before fusion of myoblasts began, the rate of calsequestrin synthesis increased severalfold. The rate of synthesis continued to increase until about 72 h and then diminished. If cells were transferred at 44 h to DME medium containing 0.2 volume of fetal calf serum and 0.08 volume of chick embryo extract, fusion was delayed by about 20 h. In this medium the rate of calsequestrin synthesis diminished after a peak at 44 h but, by contrast, the rate of synthesis of the ATPase increased dramatically following fusion at about 80 h. If cells were transferred at about 40 h to DME medium containing 0.1 volume of horse serum and only 60 muM Ca2+ the cells did not fuse and, again, the rate of calsequestrin synthesis was diminished after a peak at about 40 h. By contrast the rate of ATPase synthesis increased sharply in spite of the lack of fusion. Both proteins were degraded with a half-life of about 20 h. These studies show that the synthesis of calsequestrin, an extrinsic membrane protein, and the ATPase, an intrinsic protein of the same membrane, are synthesized under separate control.  相似文献   

3.
Ca++-Mg++-dependent ATPase and calsequestrin, the major intrinsic and extrinsic proteins, respectively, of the sarcoplasmic reticulum, were localized in cryostat sections of adult rat skeletal muscle by immunofluorescent staining and phase-contrast microscopy. Relatively high concentrations of both the ATPase and calsequestrin were found in fast-twitch myofibers while a very low concentration of the ATPase and a moderate concentration of calsequestrin were found in slow-twitch myofibers. These findings are consistent with previous biochemical studies of the isolated sarcoplasmic reticulum of slow-twitch and fast-twitch mammalian muscles. The distribution of the ATPase in muscle fibers is distinctly different from that of calsequestrin. While calsequestrin is present only near the interface between the I- and A-band regions of the sarcomere, the ATPase is found throughout the I-band region as well as in the center of the A-band region. In comparing these results with in situ ultrastructural studies of the distribution of sarcoplasmic reticulum in fast-twitch muscle, it appears that the ATPase is rather uniformly distributed throughout the sarcoplasmic reticulum while calsequestrin is almost exclusively confined to those regions of the membrane system which correspond to terminal cisternae. Fluorescent staining with these antisera was not observed in vascular smooth muscle cells present in the cryostat sections of the mammalian skeletal muscle used in this study.  相似文献   

4.
In order to determine whether polymorphic forms of the Ca2+ + Mg2+-dependent ATPase exist, we have examined the cross-reactivity of five monoclonal antibodies prepared against the rabbit skeletal muscle sarcoplasmic reticulum enzyme with proteins from microsomal fractions isolated from a variety of muscle and nonmuscle tissues. All of the monoclonal antibodies cross-reacted in immunoblots against rat skeletal muscle Ca2+ + Mg2+-dependent ATPase but they cross-reacted differentially with the enzyme from chicken skeletal muscle. No cross-reactivity was observed with the Ca2+ + Mg2+-dependent ATPase of lobster skeletal muscle. The pattern of antibody cross-reactivity with a 100,000 dalton protein from sarcoplasmic reticulum and microsomes isolated from various muscle and nonmuscle tissues of rabbit demonstrated the presence of common epitopes in multiple polymorphic forms of the Ca2+ + Mg2+-dependent ATPase. One of the monoclonal antibodies prepared against the purified Ca2+ + Mg2+-dependent ATPase of rabbit skeletal muscle sarcoplasmic reticulum was found to cross-react with calsequestrin and with a series of other Ca2+-binding proteins and their proteolytic fragments. Its cross-reactivity was enhanced in the presence of EGTA and diminished in the presence of Ca2+. Its lack of cross-reactivity with proteins that do not bind Ca2+ suggests that it has specificity for antigenic determinants that make up the Ca2+-binding sites in several Ca2+-binding proteins including the Ca2+ + Mg2+-dependent ATPase.This paper is dedicated to the memory of Dr. David E. Green.  相似文献   

5.
The biosynthesis of the Ca2+- and Mg2+-dependent adenosine triphosphatase of sarcoplasmic reticulum was studied in cell cultures of embryonic chick heart. Rates of synthesis were estimated from the incorporation of tritium-labeled leucine into the ATPase. Newly synthesized ATPase was isolated from cells by immunoprecipitation. Radioactive leucine incorporation into the ATPase was determined by gel electrophoresis of the immunoprecipitates and counting of gel slices containing the ATPase band. Accumulation of the ATPase was estimated from the concentration of Ca2+ and Mg2+-dependent, hydroxylamine-sensitive phosphoprotein in the whole cell membrane fraction of cultured cells. Embryonic heart cells cultured in a medium which permitted cell proliferation showed approximately linearly increasing rates of ATPase synthesis and accumulation/culture plate as the cells proliferated. When cells were cultured in a serum-free medium, cell proliferation was inhibited and there was no sustained increase in the rate of ATPase synthesis or accumulation. Inclusion of isoproterenol or dibutyryl cyclic AMP at concentrations of 10 microM up to 1 mM in serum-free culture medium failed to stimulate significantly ATPase synthesis.  相似文献   

6.
The sites of synthesis of microsomal membrane proteins, NADPH-cytochrome c reductase and cytochrome b5, were investigated by three methods; the in vitro synthesis of these proteins by isolated rough microsomes, the immunoprecipitation of polyribosomes carrying their nascent peptides, and the immunoprecipitation of in vivo-labeled nascent peptides. The in vitro incorporation experiment confirmed that the synthesis of these microsomal proteins was carried out by the bound polyribosomes of rough microsomes. When free and bound polyribosomes were separately examined by the other two methods, we found that NADPH-cytochrome c reductase was synthesized by both classes of polyribosomes whereas cytochrome b5 was synthesized only by bound polyribosomes.  相似文献   

7.
Treatment of cardiac or skeletal muscle sarcoplasmic reticulum vesicles with 0.1 M sodium carbonate selectively extracts both the Ca2+-binding protein calsequestrin and the two "intrinsic glycoproteins," while leaving the Ca2+-dependent ATPase membrane bound. Phenyl-Sepharose chromatography in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and high salt (0.5 M NaCl) readily fractionates these solubilized proteins into a Ca2+-elutable fraction, which contains purified calsequestrin, and a low ionic strength elutable fraction, which contains one of the two intrinsic glycoproteins. Elution of calsequestrin from phenyl-Sepharose occurs near 1 mM Ca2+. Copurifying with calsequestrin are an homologous set of high molecular weight proteins, which like calsequestrin stain blue with Stains-All. These proteins are present in trace amounts and do not correspond to any sarcoplasmic reticulum proteins previously identified. Elution of calsequestrin from phenyl-Sepharose is consistent with the Ca2+-binding protein losing its hydrophobic character in the presence of millimolar Ca2+. This behavior is converse to that observed for several calmodulin-like proteins, which are eluted from hydrophobic gels in the presence of EGTA. The high yield and purity of calsequestrin prepared by this method makes possible a unique system for studying what may be a distinct class of Ca2+-binding proteins.  相似文献   

8.
m-Maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) was used to cross-link the protein components of rabbit skeletal muscle sarcoplasmic reticulum. Analysis of cross-linked material by SDS-polyacrylamide gel electrophoresis showed that both the (Ca(2+)-Mg2+)-ATPase and the 53 kDa glycoprotein could be cross-linked, since the amount of protein at the locations on the gel corresponding to uncross-linked material was reduced in the presence of 1.0 mM MBS. Cross-linked products of 130 kDa, 200-260 kDa and approx. 300 kDa were identified. Probing the cross-linked products with monoclonal antibodies against ATPase, 53 kDa glycoprotein and calsequestrin revealed no cross-linked products containing the ATPase and either calsequestrin or the 53 kDa glycoprotein over the range of molecular weights examined here. Possible interactions between the ATPase and calsequestrin or the 53 kDa glycoprotein were also investigated by studying the ATPase activity for the purified ATPase and for the ATPase in sarcoplasmic reticulum vesicles made permeable to Ca2+ with A23187. Effects of Ca2+ and ATP on the two systems were indistinguishable, providing no evidence for a major modulatory role of calsequestrin or the 53 kDa glycoprotein on the ATPase.  相似文献   

9.
Tissue contents of the sarcoplasmic-reticulum Ca2+-ATPase (Ca2+ +Mg2+-dependent ATPase), of calsequestrin and of parvalbumin were immunochemically quantified in homogenates of fast- and slow-twitch muscles of embryonic, maturing and adult rabbits. Unlike parvalbumin, Ca2+-ATPase and calsequestrin were expressed in embryonic muscles. Presumptive fast-twitch muscles displayed higher contents of these two proteins than did presumptive slow-twitch muscles. Calsequestrin steeply increased before birth and reached adult values in the two muscle types 4 days after birth. The main increase in Ca2+-ATPase occurred during the first 2 weeks after birth. Denervation of postnatal fast- and slow-twitch muscles decreased calsequestrin to amounts typical of embryonic muscle and suppressed further increases of Ca2+-ATPase. Denervation caused slight decreases in Ca2+-ATPase in adult fast-twitch, but not in slow-twitch, muscles, whereas calsequestrin was greatly decreased in both. Chronic low-frequency stimulation induced a rapid decrease in parvalbumin in fast-twitch muscle, which was preceded by a drastic decrease in the amount of its polyadenylated RNA translatable in vitro. Tissue amounts of Ca2+-ATPase and calsequestrin were essentially unaltered up to periods of 52 days stimulation. These results indicate that in fast- and slow-twitch muscles different basal amounts of Ca2+-ATPase and calsequestrin are expressed independent of innervation, but that neuromuscular activity has a modulatory effect. Conversely, the expression of parvalbumin is greatly enhanced by phasic, and drastically decreased by tonic, motor-neuron activity.  相似文献   

10.
Temporal patterns of biosynthesis of the Ca2+ + Mg2+-dependent adenosine triphosphatase of sarcomplasmic reticulum were obtained from studies with primary cultures of rat skeletal muscle cells. Rates of synthesis at various stages of differentiation were estimated from the incorporation of tritium-labeled leucine into the ATPase. Cells were solubilized with detergent, and newly synthesized ATPase was isolated from cells by antibody precipitation in the presence of carrier ATPase. Radioactivity incorporated into the ATPase was determined after gel electrophoresis of the precipitates and counting of gel slices containing the ATPase band. In Dulbecco's modified Eagle's medium containing 10% horse serum and 0.5% chick embryo extract, mononucleated myoblast cells began to form multinucleated myotubes after about 50 hours in culture. Prior to fusion little ATPase synthesis was detectable; during fusion the ATPase was synthesized at an accelerating rate for a period of about 30 hours. The rate of synthesis levelled off after about 90 hours coincident with termination of fusion. In Dulbecco's modified Eagle's medium containing 20% fetal calf serum and 8% embryo extract, the onset of fusion was delayed for 30 to 40 hours. In this medium biosynthesis of the ATPase was also delayed so that biosynthesis of the ATPase appeared to be correlated with fusion of muscle cells. Cells cultured in Culbecco's modified Eagle's medium containgin 10% horse serum, but only 60 muM Ca2+, proliferated but did not fuse. Under these conditions, synthesis of the ATPase was measurable at 50 to 60 hours, and the rate of synthesis accelerated until 120 hours when it declined. Under all conditions degradation of the ATPase occurred with a half-life of 20 hours whereas the half-life of total protein degradation was 40 hours. Synthesis of the sarcoplasmic reticulum ATPase, like that of a number of other muscle-specific proteins, is greatly accelerated as myoblasts fuse and differentiate into myotubes. Fusion is not essential for this phenomenon, however, although it is normally concomitant with it.  相似文献   

11.
A separate and distinct population of polyribosomes exists in the detergent-washed nuclei of adenovirus-infected HeLa cells. These polyribosomes, released by exposure to polynucleotides such as high molecular weight nuclear RNA or poly(U), do not appear to be cytoplasmic contaminants. Nuclear polyribosomes have a considerably lower buoyant density compared to cytoplasmic ones. Nuclear polyribosomes, in a cell-free system of protein synthesis, are six- to eight-fold less active compared to cytoplasmic ones and are insensitive to aurin tricarboxylic acid. They do not complement cytoplasmic polyribosomes in protein synthesis in the cell-free system. Finally, the number of proteins synthesized by nuclear polyribosomes is higher compared with that synthesized by the cytoplasmic ones. Only the virus-specific proteins, including P-VII, are synthesized by cytoplasmic polyribosomes. Nuclear polyribosomes, on the other hand, synthesize virusspecific proteins, including P-VII and VII, and a number of additional proteins not synthesized by the cytoplasmic ones.  相似文献   

12.
Free polyribosomes and polyribosomes bound to endoplasmic membranes were isolated from 10-day-old chick embryos by differential centrifugation. The tightly and loosely bound polyribosomal fractions were isolated from the membrane-bound polyribosomes using 0,5 M KCl. The synthesis of collagen and non-collagen proteins on the polyribosomes were studied in a homologous cell-free system. It was shown that the polyribosomes tightly bound to the membranes possess a lower protein-synthesizing activity as compared to free and loosely bound polyribosomes. The amount of bacterial collagenase-cleaved polypeptides in the protein product synthesized on the polyribosomes tightly and loosely bound to the memranes and on free polyribosomes is 31, 23 and 9%, respectively. The data obtained suggest that the loosely bound polyribosomes are actively involved in collagen synthesis and that this fraction is not a contamination of free polyribosomes in the preparations of totally bound polyribosomes. The role of tightly and loosely bound polyribosomes in the formation of the membrane polyribosomal complex is discussed.  相似文献   

13.
Protein synthesis has been studied in a cell-free system from chick embryo, in the presence of homologous RNA isolated from free and endoplasmic reticulum-bound polyribosomes. The two RNA fractions showed equal activities in total protein synthesis. However, while the RNA from bound polyribosomes mainly supported synthesis of high molecular weight, TCA-insoluble polypeptides, the RNA from free polyribosomes was more active in the synthesis of low molecular weight, TCA-soluble polypeptides. Optimal conditions for translation of the two RNA's under study were different when studied in a cell-free system with reduced content of endogenous matrix. Collagen synthesized in the system was identified by collagenase digestion. Collagen synthesis was demonstrated only in the presence of RNA from endoplasmic reticulum-bound polyribosomes, and represented 16-19% of total protein synthesis.  相似文献   

14.
We determined the sites of synthesis of avian sarcoma virus-specific proteins in infected chicken cells by immunoprecipitation of the products synthesized in vitro by free and membrane-bound polyribosomes; 85% of Pr76, the precursor of the viral internal structural proteins (group-specific antigens), was synthesized on free polyribosomes, and 15% was synthesized on membrane-bound polyribosomes. Pr92, the lycosylated precursor of the viral glycoproteins (gp85 and gp35), was synthesized exclusively on membrane-bound polyribomes, which is consistent with its role as a membrane protein. When we investigated the site of synthesis of pp60src, the product of the avian sarcoma virus src gene, we found that 90% was synthesized on free polyribosomes, whereas 10% was detected on membrane-bound polyribosomes. The implications of these results with respect to the subcellular location of pp60src are discussed.  相似文献   

15.
Ca2+-uptake activities of the sarcoplasmic reticulum (SR) were determined with a Ca2+-sensitive electrode in homogenates from fast- and slow-twitch muscles from both normal and dystrophic mice (C57BL/6J strain) of different ages. Immunochemical quantification of tissue Ca2+-ATPase content allowed determination of the specific Ca2+-transport activity of the enzyme. In 3-week-old mice of the dystrophic strain specific Ca2+ transport was already significantly lower than in the normal strain. It progressively decreased with maturation and reached only 40-50% and 30-50% of the normal values in fast- and slow-twitch muscles of adult dystrophic animals, respectively. Tissue contents of calsequestrin were reduced in both types of muscle leading to an increased Ca2+-ATPase to calsequestrin protein ratio. Equal amounts of the Ca2+-ATPase protein (detected by Coomassie blue staining of polyacrylamide gels) were present in SR vesicles isolated by Ca2+-oxalate loading from adult normal and dystrophic fast-twitch muscles. However, the specific ATP-hydrolysing activity of the enzyme was approximately 50% lower in dystrophic than in normal SR. The reduced ATP-hydrolysing activity was correlated with decreased Ca2+-transport activity, phosphoprotein formation and fluorescein isothiocyanate labeling as determined in total microsomal and heavy SR fractions. Although the Ca2+ and ATP affinities of the enzyme were unaltered, its ATPase activity was reduced at all levels of ATP in the dystrophic SR. Taken together, these findings point to a markedly impaired function of the SR and an increase in the population of inactive SR Ca2+-ATPase molecules in murine muscular dystrophy.  相似文献   

16.
Interleukin-1 (IL-1) is synthesized as a 31 kDa precursor protein, whose multiple extracellular activities are attributed to receptor binding of a processed, carboxy-terminal 17 kDa peptide. Unlike other secreted proteins, the IL-1 precursor lacks a hydrophobic leader sequence and is not found in organelles composing the classical secretory pathway. In order to further clarify the intracellular processing of IL-1, we studied its site of synthesis in human monocytes. Secreted and integral membrane proteins are translated on membrane-bound polyribosomes, while intracellular proteins are translated on free polyribosomes. Free and membrane-bound polysomes were isolated from Lipid A-stimulated monocyte lysates and immunoblotted using antibodies specific to the N-terminal regions of the IL-1 alpha and beta precursors. Free polysome fractions showed multiple small bands consistent with nascent peptide chains; membrane-bound polysomes yielded no detectable IL-1. Polysome fractions were then analyzed by immunoelectron microscopy; nascent IL-1 alpha and beta peptide chains were readily seen emerging from cytoskeletal-associated free polyribosomes, but not membrane-bound polyribosomes. Electron microscopic in situ hybridization revealed IL-1 mRNA chains attached to cytoskeletal-associated free, but not membrane-bound polyribosomes. The intracellular distribution of the fully synthesized IL-1 beta precursor was studied in human mesangial cells (HMC), whose cytoskeletal organization is more readily evaluated than that of monocytes. Dual immunofluorescence microscopy of these cells revealed a complex intracellular distribution of the fully synthesized 31 kDa IL-1 precursors. IL-1 was asymmetrically distributed between cytosolic, microtubule, and nuclear compartments, without association with actin or intermediate filaments. This demonstration of the sites of IL-1 synthesis and patterns of intracellular distribution provide further evidence for an extracellular release mechanism which is clearly distinct from the classical secretory pathway.  相似文献   

17.
Xestoquinone isolated from a marine sponge binds to skeletal muscle myosin and inhibits its Ca(2+) ATPase activity. In this study, we first examined xestoquinone and its analogues to assess the relationships between structure and myosin Ca(2+) ATPase inhibitory activity. On the basis of the resultant data, we then designed a biotinylated xestoquinone analogue. Xestoquinone and its analogues were derived from extracts of the marine sponge Xestospongia sapra. Four xestoquinone analogues with a quinone structure significantly inhibited Ca(2+) ATPase activity. In contrast, four xestoquinone analogues in which the quinone structure was converted to a quinol dimethyl ether did not inhibit Ca(2+) ATPase activity. This suggests that the quinone moiety is essential for inhibitory activity. Then, we synthesized a biotinylated xestoquinone in which a biotin tag was introduced to a site far from the quinone moiety, and this molecule exhibited stronger inhibitory activity than that of xestoquinone. This biotinylated xestoquinone could be useful as a probe in studies of the xestoquinone-myosin binding mode.  相似文献   

18.
To identify intracellular Ca2+ stores, we have mapped (by cryosection immunofluorescence and immunogold labeling) the distribution in the chicken cerebellar cortex of an essential component, the main low affinity-high capacity Ca2+ binding protein which in this tissue has been recently shown undistinguishable from muscle calsequestrin (Volpe, P., B. H. Alderson-Lang, L. Madeddu, E. Damiani, J. H. Collins, and A. Margreth. 1990. Neuron. 5:713-721). Appreciable levels of the protein were found exclusively within Purkinje neurons, distributed to the cell body, the axon, and the elaborate dendritic tree, with little labeling, however, of dendritic spines. At the EM level the protein displayed a dual localization: within the ER (rough- and smooth-surfaced cisternae, including the cisternal stacks recently shown [in the rat] to be highly enriched in receptors for inositol 1,4,5-triphosphate) and, over 10-fold more concentrated, within a population of moderately dense, membrane-bound small vacuoles and tubules, identified as calciosomes. These latter structures were widely distributed both in the cell body (approximately 1% of the cross-sectional area, particularly concentrated near the Golgi complex) and in the dendrites, up to the entrance of the spines. The distribution of calsequestrin was compared to those of another putative component of the Ca2+ stores, the membrane pump Ca2+ ATPase, and of the ER resident lumenal protein, Bip. Ca2+ ATPase was expressed by both calciosomes and regular ER cisternae, but excluded from cisternal stacks; Bip was abundant within the ER lumena (cisternae and stacks) and very low within calciosomes (average calsequestrin/Bip immunolabeling ratios were approximately 0.5 and 36.5 in the two types of structure, respectively). These results suggest that ER cisternal stacks do not represent independent Ca2+ stores, but operate coordinately with the adjacent, lumenally continuous ER cisternae. The ER and calciosomes could serve as rapidly exchanging Ca2+ stores, characterized however by different properties, in particular, by the greater Ca2+ accumulation potential of calciosomes. Hypotheses of calciosome biogenesis (directly from the ER or via the Golgi complex) are discussed.  相似文献   

19.
J Gagnon  T T Kurowski  R Zak 《FEBS letters》1989,250(2):549-555
We have used the overload-induced growth of avian muscles to study the assembly of the newly synthesized myosins which were separated by non-denaturing pyrophosphate-polyacrylamide gel electrophoresis. Using this model, we have observed the appearance of fast-like isomyosins in polyribosomes prepared from slow anterior latissimus dorsi muscle after 72 h of overload. These new isoforms comigrating with native myosin from fast posterior latissimus dorsi muscle were not yet present in cellular extracts from the same muscle. The in vitro translation system utilizing muscle specific polyribosomes directs the synthesis of the corresponding myosin isoforms. Under denaturing conditions, myosin heavy chains and light chains dissociate to the expected subunit composition of each specific isoform. The synthesis and assembly of native myosin on polyribosomes indicate that myosin exists as a single mature protein prior to the incorporation in the thick filament.  相似文献   

20.
The distribution of calsequestrin and calreticulin in smooth muscle and non-muscle tissues was investigated. Immunoblots of endoplasmic reticulum proteins probed with anti-calreticulin and anti-calsequestrin antibodies revealed that only calreticulin is present in the rat liver endoplasmic reticulum. Membrane fractions isolated from uterine smooth muscle, which are enriched in sarcoplasmic reticulum, contain a protein band which is immunoreactive with anti-calreticulin but not with anti-calsequestrin antibodies. The presence of calreticulin in these membrane fractions was further confirmed by 45Ca2+ overlay and "Stains-All" techniques. Calreticulin was also localized to smooth muscle sarcoplasmic reticulum by the indirect immunofluorescence staining of smooth muscle cells with anti-calreticulin antibodies. Furthermore, both liver and uterine smooth muscle were found to contain high levels of mRNA encoding calreticulin, whereas no mRNA encoding calsequestrin was detected. We have employed an ammonium sulfate precipitation followed by Mono Q fast protein liquid chromatography, as a method by which calsequestrin and calreticulin can be isolated from whole tissue homogenates, and by which they can be clearly resolved from one another, even where present in the same tissue. Calreticulin was isolated from rabbit and bovine liver, rabbit brain, rabbit and porcine uterus, and bovine pancreas and was identified by its amino-terminal amino acid sequence. Calsequestrin cannot be detected in preparations from whole liver tissue, and only very small amounts of calsequestrin are detectable in ammonium sulfate extracts of uterine smooth muscle. We conclude that calreticulin, and not calsequestrin, is a major Ca2+ binding protein in liver endoplasmic reticulum and in uterine smooth muscle sarcoplasmic reticulum. Calsequestrin and calreticulin may perform parallel functions in the lumen of the sarcoplasmic and endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号