首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonium sulphate is a major component of the air pollutants deposited on forests in the Netherlands. Different amounts of NH4 + were added to Douglas-fir seedlings grown in tall containers of sand, to study the influence of high concentrations of NH4 + in the soil on the development of fine roots and the effects of nitrogen uptake on rhizosphere pH. At the end of this eight-month experiment part of the ammonium appeared to have nitrified into nitrate. High doses of ammonium negatively affected root length and root length per unit of dry matter (specific root length). Although Douglas fir shows a preferential ammonium uptake in nutrient solutions the increases in the pH of the rhizosphere in this experiment indicate that nitrogen was mostly taken up as nitrate. When the ammonium concentration in the soil is low, it cannot be taken up readily because of its low mobility in soil. Shoot growth was stimulated by high availability of nitrogen. The possible effects of high doses of ammonium on long-term forest vitality are discussed.  相似文献   

2.
【背景】连作可引起微生物群落结构失调,导致土壤环境恶化、养分循环不畅、当归[Angelica sinensis (Oliv.) Diels]产量降低,通过现代微生物技术改良土壤、消减连作障碍势在必行。【目的】于大田条件下,研究施用复合菌剂对当归根围土壤酶活、速效养分及产量的影响,明确增产机制,改进增产措施。【方法】利用溶磷圈法检测不同菌株溶磷活性、乙炔还原法检测固氮活性、试剂盒法检测过氧化物酶和硝化能力;复合菌剂T1[荧光假单胞菌(Pseudomonas fluorescens)CBS5、产碱假单胞菌(Pseudomonas alcaligenes) CBS7、嗜冷假单胞菌(Pseudomonas extremaustralis)CBSB、生枝动胶菌(Zoogloea ramigera) CBS4]和T2 (荧光假单胞菌CBS5、产碱假单胞菌CBS7、嗜冷假单胞菌CBSB)及对照CK (无菌马铃薯葡萄糖肉汤培养基)分别处理连作当归,分光光度法测定根围土壤及根中养分循环、转化相关酶活,氮、磷、钾速效养分含量;常规方法测产量;统计软件进行相关数据方差分析和主成分分析。【结果】产碱假单胞菌C...  相似文献   

3.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Effect of rhizosphere pH on the availability and uptake of Fe,Mn and Zn   总被引:6,自引:1,他引:6  
In pot experiments the relationships between rhizosphere pH, the extractable levels of Fe, Mn and Zn in the soil and their uptake into the roots and shoots of dwarf French beans have been studied. Variations in rhizosphere pH were induced by applying three different sources of nitrogencholine phosphate, ammonium phosphate and calcium nitrate-to an initially homogenised soil (preadjusted to either pH 7 or 8). The rhizosphere pH was found to be significantly lower following the application of either ammonium or choline phosphates and to be increased by calcium nitrate treatment.The Fe and Zn contents of both shoot and root were inversely proportional to rhizosphere pH. The Mn contents also increased with decreasing pH but a sharp increase was apparent below pH 5.5. The shoot Fe, Zn and Mn content were significantly correlated with the extractable levels determined in the rhizosphere and non-rhizosphere soil.This paper forms part of the Ph. D. thesis submitted by A.N.S. to the University of Wales in 1977.  相似文献   

5.
The experiment was set up to examine the influence of different nitrogen forms: (NH4)2SO4, Ca(NO3)2 or NH4NO3 on growth response, root induced pH changes in the rhizosphere, root-borne acid phosphatase activity in strawberry plants cv. Senga Sengana. The plants grown on sandy mineral soil were fertilized with 3 forms of nitrogen, in concentrations of 46 mg N·kg−1 soil. The plants were grown in rhizoboxes with removable plexiglass lids. To ensure the root growth along the plexiglass lids, the rhizoboxes were placed at an angle of about 50° with the lid on the lower side. In case of ammonium supply, the nitrification inhibitor DIDIN was added (10 mg·kg−1 of moist soil) to prevent conversion of ammonium into nitrate. The growth response (roots and shoots) of strawberry plants were determined after 11 weeks of treatment with different N forms. The best development of the root system and shoots (root and shoot dry weight and root length) was obtained, when ammonium nitrate was supplied. It is suggested therefore, that NH4NO3 stimulates vegetative growth of strawberry plants cv. Senga Sengana. However, there were no statistical differences in a leaf and flower number of the plants grown under different forms of N-fertilization. Determination of rhizosphere pH, and acid phosphatase activity were executed using non-destructive techniques, which enabled weekly measurement of chemical changes in the rhizosphere. The results revealed that the form of nitrogen supplied had a predominant effect on chemical changes in the rhizosphere of strawberry plants. The highest pH values (average pH 6.8) were measured in the rhizosphere of individual plants supplied with Ca(NO3)2. Whereas the lowest pH values (average pH 5.8) were detected in the presence of (NH4)2SO4. The curve of rhizosphere pH measured along individual roots of the plants treated with Ca(NO3)2 represents the highest pH values whereas the curve of rhizosphere pH under (NH4)2SO4 treatment had the lowest pH values. The highest activity of acid phosphatase were observed in the rhizosphere of strawberry plants grown in the presence of (NH4)2SO4, at pH 5.8.  相似文献   

6.
Effects of N sources (ammonium, nitrate and ammonitrate) and VA mycorrhizae (Glomus intraradices) on rhizosphere soil characteristics (pH, exchangeable acidity, exchangeable cations, inorganic N concentrations) growth and nutrient acquisition of coffee seedlings (Coffea arabica L. cv guatemala) were investigated in a pot study with an acid soil (Red Bluff Loam) sterilized by autoclaving. Ammonium addition decreased rhizosphere pH while nitrate and ammonitrate additions both increased rhizosphere pH. Mycorrhizae induced a higher pH, a lower exchangeable acidity and higher values of exchangeable cations in the rhizosphere. Ammonium addition resulted in a lower mycorrhizal infection than the two other N sources. Mycorrhizal plants grew better and accumulated more N, Ca and Mg than non-mycorrhizal plants.  相似文献   

7.
Zhu  Y-G  He  Y-Q  Smith  S E  Smith  F A 《Plant and Soil》2002,239(1):1-8
Two experiments were carried out in a growth chamber to investigate the phosphorus (P)-uptake efficiency of Fagopyrum esculentum Moench (buckwheat) and Triticum aestivum (spring wheat) from a Ca-bound form. The first experiment was based on a sand-culture system with either rock phosphate (RP) or CaHPO4 (CaHP) as the P source and nitrate or ammonium nitrate as nitrogen source. A highly calcareous soil was used in the second experiment. Buckwheat was shown to be highly efficient in taking up Ca-bound P compared to spring wheat. When plants were supplied with nitrate, the total P uptake by buckwheat from RP was nearly 10-fold higher than that of spring wheat (20.1 compared with 2.1 mg P pot–1). Changing nitrogen source from nitrate only to ammonium nitrate increased P uptake by spring wheat substantially, but not buckwheat. High P-uptake efficiency of buckwheat was also demonstrated using the field soil, but to a lesser extent, which may be related to the difference in Zn supply between sand culture and field soil. It is suggested that buckwheat may be included in intercropping or crop rotation systems to activate P sources in calcareous soils. The principal mechanism of P uptake efficiency of buckwheat may be its ability to acidify the rhizosphere; however, further study is needed to unravel the regulation of root excretion of H+ and its molecular basis in order to exploit buckwheat's genetic capability to utilise sparingly soluble P from soil.  相似文献   

8.
Possible Involvement of Cytokinin in Nitrate-mediated Root Growth in Maize   总被引:1,自引:1,他引:0  
Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrate can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Nevertheless, less is known about the physiological mechanisms. In the present study, two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study a possible role of cytokinin in nitrate-mediated root growth in nutrient solutions. Root elongation of 478 was more sensitive to high nitrate supply than that of Wu312. Medium high nitrate (5 mM) inhibited root elongation in 478, while, root elongation in Wu312 was only inhibited at high NO 3 supply (20 mM). Under high nitrate supply, the root elongation zone in 478 became swollen and the site of lateral root elongation was close towards the root tip. Both of the phenomena are typical of root growth induced by exogenous cytokinin treatments. Correspondingly, zeatin and zeatin nucleotide (Z + ZR) concentrations were increased at higher nitrate supply in 478, whereas they were constant in Wu312. Furthermore, exogenous cytokinin 6-benzylaminopurine (6-BA) completely reversed the stimulatory effect of low nitrate on root elongation. Therefore, it is supposed that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots. High nitrate supply may have negative influences on root apex activity by affecting cytokinin metabolism so that root apical dominance is weakened and, therefore, root elongation is suppressed and lateral roots grow closer to the root apex. Nitrate suppressed lateral root elongation in Wu312 at concentration higher than 5 mM. In 478, however, this phenomenon was not significant even at 20 mM nitrate. Although exogenous 6-BA (20 nM) could suppress lateral root elongation as well, the inhibitory effect of high NO 3 concentration of nitrate on lateral root growth cannot be explained by changes in endogenous cytokinin alone.  相似文献   

9.
Root exudates as mediators of mineral acquisition in low-nutrient environments   总被引:39,自引:3,他引:36  
Plant developmental processes are controlled by internal signals that depend on the adequate supply of mineral nutrients by soil to roots. Thus, the availability of nutrient elements can be a major constraint to plant growth in many environments of the world, especially the tropics where soils are extremely low in nutrients. Plants take up most mineral nutrients through the rhizosphere where micro-organisms interact with plant products in root exudates. Plant root exudates consist of a complex mixture of organic acid anions, phytosiderophores, sugars, vitamins, amino acids, purines, nucleosides, inorganic ions (e.g. HCO3 , OH, H+), gaseous molecules (CO2, H2), enzymes and root border cells which have major direct or indirect effects on the acquisition of mineral nutrients required for plant growth. Phenolics and aldonic acids exuded directly by roots of N2-fixing legumes serve as major signals to Rhizobiaceae bacteria which form root nodules where N2 is reduced to ammonia. Some of the same compounds affect development of mycorrhizal fungi that are crucial for phosphate uptake. Plants growing in low-nutrient environments also employ root exudates in ways other than as symbiotic signals to soil microbes involved in nutrient procurement. Extracellular enzymes release P from organic compounds, and several types of molecules increase iron availability through chelation. Organic acids from root exudates can solubilize unavailable soil Ca, Fe and Al phosphates. Plants growing on nitrate generally maintain electronic neutrality by releasing an excess of anions, including hydroxyl ions. Legumes, which can grow well without nitrate through the benefits of N2 reduction in the root nodules, must release a net excess of protons. These protons can markedly lower rhizosphere pH and decrease the availability of some mineral nutrients as well as the effective functioning of some soil bacteria, such as the rhizobial bacteria themselves. Thus, environments which are naturally very acidic can pose a challenge to nutrient acquisition by plant roots, and threaten the survival of many beneficial microbes including the roots themselves. A few plants such as Rooibos tea (Aspalathus linearis L.) actively modify their rhizosphere pH by extruding OH and HCO3 to facilitate growth in low pH soils (pH 3 – 5). Our current understanding of how plants use root exudates to modify rhizosphere pH and the potential benefits associated with such processes are assessed in this review.  相似文献   

10.
A fluorimetric ratio technique was elaborated to measure apoplastic pH in the outer root cortex of maize (Zea mays L.) grown hydroponically. A newly synthesized fluorescent probe, fluorescein boronic acid (pKa = 5.48), which covalently binds to the cell wall of the outer cell layers, was used. Under conditions of saturating ion concentrations the apoplastic pH was determined along the root axis ranging from 1 to 30 mm behind the root tip. Apoplastic pH was recorded for root segment areas (1 mm2), and pH values of high statistical significance were obtained. With an external solution of pH 5, the apoplastic pH was about pH 5.1 in the division zone, between pH 4.8 and 4.9 in the elongation region and about pH 4.9 in the root hair zone. At an external pH of 8.6, the difference between the external pH and the apoplastic pH was considerably more, with a pH of 5.2–5.3 in all root zones. Addition of 1 mM NH4 + caused a small apoplastic pH decrease (0.05 of a pH unit) in all root zones. Apoplastic alkalization upon application of 6 mM NO3 was highest (0.3 of a pH unit) in the zone where root hairs emerge; in the division and early elongation zones, apoplastic pH increased only transiently. In the presence of 10 mM HCO3 , NO3 elicited a higher and persistent alkalization (0.06–0.25 of a pH unit) in all root zones. Application of fusicoccin reduced apoplastic pH from 4.85 to 4.75 in the elongation zone, while inhibition of the H+-ATPase with vanadate alkalized the apoplast in the root hair zone from pH 5.4 to 5.6. The observed pH differences along the root axis upon differential N supply and application of HCO3 provide evidence that this new pH technique is a useful tool with which to measure apoplastic pH, and in future may permit measurements at microsites at the cell level by use of microscope imaging. Received: 26 August 1998 / Accepted: 4 May 1999  相似文献   

11.
Seedlings of two cultivars of wheat (Triticum aestivum L.) differing in tolerance to aluminium (Al) were grown using a split-root sand/soil culture technique. Each culture tube was divided horizontally into a surface (0–150 mm) compartment and a subsurface (150–250 mm) compartment separated by a root-permeable paraffin wax barrier. Thus phosphorus (P) supplied to surface roots could not percolate or diffuse into the soil in the subsurface compartment. The soil in the subsurface compartment was divided into ‘rhizosphere’ and ‘non-rhizosphere’ zones using a porous (5 μm) membrane. Root growth of both cultivars into the subsurface zone was enhanced by increased P supply to surface roots, but did not conform to known relationships between root growth and soil pH, extractable-Al, or pH, Al or P concentrations in soil solution. Concentrations of Al in soil solution in the rhizosphere were greater than those in solution in the bulk soil. Concentrations of Al reactive with pyrocatechol violet (30s-RRAI) in the rhizosphere soil solution were generally greater than those in non-rhizosphere soil. With the Al-sensitive cultivar, root dry weight and length increased as concentrations of RRAl in the rhizosphere soil solution increased. Increased concentrations of Al in rhizosphere soil solutions were not related to the presence of organic ligands in solution. The effect of P in promoting root penetration into the acidic subsurface stratum was not related to differential attainment of maturity by the plant shoots, but appeared to be related to the effect of P in enhancing the rate of root growth. Thus, suboptimal supply of P to the surface roots of a plant, even at levels sufficient to preclude development of nutritional (P) stress symptoms, may seriously reduce tolerance to Al, and hence diminish the ability of roots to penetrate into acidic subsoils.  相似文献   

12.
Ammonia-oxidizing bacteria (AOB) populations were studied on the root surface of different rice cultivars by PCR coupled with denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). PCR-DGGE of the ammonium monooxygenase gene (amoA) showed a generally greater diversity on root samples compared to rhizosphere and unplanted soil. Sequences affiliated with Nitrosomonas spp. tended to be associated with modern rice hybrid lines. Root-associated AOB observed by FISH were found within a discrete biofilm coating the root surface. Although the total abundance of AOB on root biofilms of different rice cultivars did not differ significantly, there were marked contrasts in their population structure, indicating selection of Nitrosomonas spp. on roots of a hybrid cultivar. Observations by FISH on the total bacterial community also suggested that different rice cultivars support different bacterial populations even under identical environmental conditions. The presence of active AOB in the root environment predicts that a significant proportion of the N taken up by certain rice cultivars is in the form of NO3 -N produced by the AOB. Measurement of plant growth of hydroponically grown plants showed a stronger response of hybrid cultivars to the co-provision of NH4 + and NO3 . In soil-grown plants, N use efficiency in the hybrid was improved during ammonium fertilization compared to nitrate fertilization. Since ammonium-fertilized plants actually receive a mixture of NH4 + and NO3 with ratios depending on root-associated nitrification activity, these results support the advantage of co-provision of ammonium and nitrate for the hybrid cultivar.  相似文献   

13.
This study investigated aerenchyma formation and function in adventitious roots of wheat (Triticum aestivum L.) when only a part of the root system was exposed to O2 deficiency. Two experimental systems were used: (1) plants in soil waterlogged at 200 mm below the surface; or (2) a nutrient solution system with only the apical region of a single root exposed to deoxygenated stagnant agar solution with the remainder of the root system in aerated nutrient solution. Porosity increased two‐ to three‐fold along the entire length of the adventitious roots that grew into the water‐saturated zone 200 mm below the soil surface, and also increased in roots that grew in the aerobic soil above the water‐saturated zone. Likewise, adventitious roots with only the tips growing into deoxygenated stagnant agar solution developed aerenchyma along the entire main axis. Measurements of radial O2 loss (ROL), taken using root‐sleeving O2 electrodes, showed this aerenchyma was functional in conducting O2. The ROL measured near tips of intact roots in deoxygenated stagnant agar solution, while the basal part of the root remained in aerated solution, was sustained when the atmosphere around the shoot was replaced by N2. This illustrates the importance of O2 diffusion into the basal regions of roots within an aerobic zone, and the subsequent longitudinal movement of O2 within the aerenchyma, to supply O2 to the tip growing in an O2 deficient zone.  相似文献   

14.
Quantitative estimation of root exudation of maize plants   总被引:6,自引:0,他引:6  
Summary The rate of root exudation of maize plants was estimated by measuring the rate of denitrification in a hermetically sealed root system. While CO2 production measured in the rhizosphere results both from root respiration and microbial respiration N2O production during nitrate respiration is solely related to the amount of root exudates available for bacterial degradation. With 4 week old plants growing in quartz sand or soil root exudation amounted to 7% of the net photosynthates. Calculations revealed that about 25% of the organic matter flowing into the root system was excreted into the rhizosphere.  相似文献   

15.
Gerendás  J.  Ratcliffe  R. G.  Sattelmacher  B. 《Plant and Soil》1993,155(1):167-170
In vivo 31P nuclear magnetic resonance (NMR) was used to characterize the effect of the N form (NO3 vs. NH4) and the external pH (4, 6, and 8), on the intracellular pH of root tips (0–5 mm) and root segments (5–30 mm). Ammonium-grown root tips were the most sensitive to changes in the external pH. In vivo 15N NMR was used to characterize the pathway of primary ammonium assimilation in the ammonium-grown roots and to compare the activity of the apical and more-basal root parts. The kinetics of 15NH4 + incorporation showed that primary assimilation in both root tips and root segments followed the glutamine synthetase (GS) pathway. In agreement with the reported gradient of GS along the seminal root of maize, incorporation of label into glutamine amide was more rapid in tips than in segments. It is suggested that this higher GS activity increases the endogenous proton production and thus contributes to the greater dependence of the cytoplasmic pH on the external pH in the ammonium-treated root tips.  相似文献   

16.
The effect of potentially toxic concentrations of ammonium on root development of Scots pine seedlings raised on Perlite was investigated during growth periods of 3 or 10 weeks after sowing. It was shown that imbalanced ammonium nutrition led to conspicuous changes of root morphology provided the pH value in the medium was allowed to decrease to 3.9 due to the NH+4-dependent proton excretion into the rhizosphere. Ammonium toxicity could not be observed with seedlings treated either with ammonium nitrate or with ammonium chloride at pH 5.3 ? 6.8. While the supply of NH+4 considerably inhibited root development the biomass production of the shoot was increased. Determination of the endogenous level of ammonium in roots and the leaf whorl exclude a simple causal correlation between ammonium toxicity and accumulated ammonium as has been postulated for herbaceous plants.  相似文献   

17.
Wheat (Triticum aestivum L.) was grown in nutrient solution with low or high N supply (NH4NO3 as N source). To further evaluate the influence of N form and its interaction with the nutrient solution pH, wheat plants were grown with NH 4 + or NO 3 - either in an conventional nutrient solution or in a nutrient solution in which the pH was maintained at pH 6.5 using a pH-stat system. The nutrient solution was inoculated with Pseudomonas fluorescens 2-79RLI, a genetically modified bacterium that contains lux genes activated by a ribosomal promoter. Cell numbers and physiological status of P. fluorescens 2-79RLI (length of the lag phase of bioluminescence) in the rhizosphere were determined at the root tip and in the lateral root zone. Nitrogen deficiency decreased both plant growth and root colonization by P. fluorescens 2-79RLI at the root tip while it had no effect on root colonization in the lateral root zone. The physiological status of P. fluorescens 2-79RLI was not affected by nitrogen deficiency. Ammonium nutrition increased root colonization by P. fluorescens 2-79RLI at the root tip and in the lateral root zone when the pH of the nutrient solution was allowed to change according to the N form provided. Under these conditions, the physiological status of P. fluorescens 2-79RLI was higher in the lateral root zone than at the root tip. In contrast, N source had no effect on root colonization or physiological status of P. fluorescens 2-79RLI in the nutrient solution maintained at pH 6.5. It is concluded that the stimulation of root colonization by NH 4 + in the nutrient solution, not maintained at a constant pH, may be due to increased leakage of solutes into the rhizosphere as a result of impaired exudate retention by high H+ concentration in the rhizosphere or the apoplast. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Role of nitrification and denitrification for NO metabolism in soil   总被引:3,自引:0,他引:3  
Release and uptake of NO was measured in a slightly alkaline (pH 7.8) and an acidic (pH 4.7) cambisol. In the alkaline soil under aerobic conditions, NO release was stimulated by ammonium and inhibited by nitrapyrin. Nitrate accumulated simultaneously and was also inhibited by nitrapyrin.15NO was released after fertilization with15NH4NO3 but not with NH4 15NO3. The results indicate that in aerobic alkaline cambisol NO was mainly produced during nitrification of ammonium. The results were different under anaerobic conditions and also in the acidic cambisol. There, NO release was stimulated by nitrate and not by ammonium, and was inhibited by chlorate and not by nitrapyrin indicating that NO production was exclusively due to reduction of nitrate. The results were confirmed by15NO being released mainly from NH4 15NO3 rather than from15NH4NO3. The observed patterns of NO release were explained by the NO production processes being stimulated by either ammonium or nitrate in the two different soils, whereas the NO consumption processes being only stimulated by nitrate. NO release was larger than N2O release, but both were small compared to changes in concentrations of soil ammonium or nitrate.(*request for offprints)  相似文献   

19.
Summary Relationships between root zone temperature, concentrations and uptake rates of NH 4 + and NO 3 were studied in non-mycorrhizal roots of 4-year-old Norway spruce under controlled environmental conditions. Additionally, in a forest stand NH 4 + and NO 3 uptake rates along the root axis and changes in the rhizosphere pH were measured. In the concentration (Cmin) range of 100–150 M uptake rates of NH 4 + were 3–4 times higher than those of NO 3 The preference for NH 4 + uptake was also reflected in the minimum concentration (Cmin) values. Supplying NH4NO3, the rate of NO 3 uptake was very low until the NH 4 + concentrations had fallen below about 100 M. The shift from NH 4 + to NO 3 uptake was correlated with a corresponding shift from net H+ production to net H+ consumption in the external solution. The uptake rates of NH 4 + were correlated with equimolar net production of H+. With NO 3 nutrition net consumption of H+ was approximately twice as high as uptake rates of NO 3 In the forest stand the NO 3 concentration in the soil solution was more than 10 times higher than the NH 4 + concentration (<100 M), and the rhizosphere pH of non-mycorrhizal roots considerably higher than the bulk soil pH. The rhizosphere pH increase was particularly evident in apical root zones where the rates of water and NO 3 uptake and nitrate reductase activity were also higher. The results are summarized in a model of water and nutrient transport to, and uptake by, non-mycorrhizal roots of Norway spruce in a forest stand. Model calculations indicate that delivery to the roots by mass flow may meet most of the plant demand of nitrogen and calcium, and that non-mycorrhizal root tips have the potential to take up most of the delivered nitrate and calcium.  相似文献   

20.
弋良朋  王祖伟 《生态学报》2017,37(20):6855-6862
根际是控制植物养分动态的重要因素,养分动态也影响着根际土壤环境。当土壤被污水污泥改良后,根际土壤中的养分和重金属性质也会发生变化。目前很少有人研究施用污泥的土壤中植物根系对根际重金属有效性和分布的影响。采用根垫—冰冻薄层切片法对施用污泥后土壤中油菜根际的养分和重金属分布情况进行研究,以期探明污泥改良土壤中根际重金属的活化特征。当土壤施用污泥后,根际土壤中DTPA提取态Zn,Cd,Ni,Mn,有效磷,有效钾和铵态氮被显著消耗,而根际土壤中DTPA提取态Cu没有明显的消耗或积累。当土壤中施用大量污泥时,根际土壤的pH值随着离根表面距离的增加而增加。无论土壤是否用污泥处理,油菜根际土壤中可交换态Cu都显著减少。当土壤被50%污泥改良时,在距离根表面0—2 mm处的油菜根际土壤中碳酸盐结合态,铁锰氧化物结合态,有机物结合态,残渣态的Cu和Zn都被消耗较多。污泥的施用对油菜的生长有促进作用。随着污泥施用量的增加,油菜地上部分Cu和Zn的含量没有显著变化。施用污泥量小于25%的土壤中,污泥没有增加重金属的可利用性和移动性。除了Cu,油菜根际土壤中DTPA提取态Zn,Cd,Ni的减少表明施用污泥的土壤中重金属的活化是非常有限的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号