首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A BacMam baculovirus was designed in our laboratory to express the reporter protein secreted alkaline phosphatase (SEAP) driven by the immediate early promoter of human cytomegalovirus promoter (CMV). In vitro tests have been carried out using this recombinant baculovirus to study the secreted protein in two cell lines and under various culture conditions. The transductions were carried out on two commonly used mammalian cell lines namely the human embryonic kidney (HEK 293A) and Chinese hamster ovary (CHO-K1). Initial studies clearly demonstrated that the transient expression of SEAP was at least 10-fold higher in the HEK 293 cells than the CHO cells under equivalent experimental conditions. Factorial design experiments were done to study the effect of different parameters such as cell density, MOI, and the histone deacetylase inhibitor, trichostatin A concentration. The multiplicity of infection (MOI) and the cell density were found to have the most impact on the process. The enhancer trichostatin A also showed some positive effect. The production of secreted protein in a batch reactor was studied using the Wave disposable bioreactor system. A semi-continuous perfusion process was developed to extend the period of gene expression in mammalian cells using a hollow fiber bioreactor system (HFBR). The growth of cells and viability in both systems was monitored by offline analyses of metabolites. The expression of recombinant protein could be maintained over an extended period of time up to 30 days in the HFBR.  相似文献   

2.
Choi SK  Chang HN  Lee GM  Kim IH  Oh DJ 《Cytotechnology》1995,17(3):173-183
A depth filter perfusion system (DFPS) with polypropylene fibers had been demonstrated to support high density cultures of anchorage-independent hybridoma cells. The DFPS provides advantages of high surface-to-volume ratio of 450–600 cm2/cm3, low cost set-up, easy operation and scale-up. To test the feasibility of using DFPS for high density cultures of anchorage-dependent cells, Vero cells were cultivated in the DFPS. Gelatin coating on polypropylene fibers in the DFPS was necessary to promote cell attachment and growth. Dissolved oxygen (DO) concentrations could be controlled by sparging air into the reservoir vessel through a filter sparger. When DO concentration was controlled above 40% of air saturation in the DFPS with 40 m pore size, the maximum cell concentration as estimated on specific lactate production rate, was 3.81×107 cells/ml of the total reactor volume. This viable cell concentration is approximately 18 times higher than that obtained in a T-flask batch culture. Taken together, the results obtained here showed the potential of DFPS for high-density cultures of anchorage-dependent cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号