首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the ability of human anti-herpes simplex virus (HSV) cytotoxic T lymphocytes (CTL) to lyse autologous human fibroblasts infected with HSV. In contrast to HSV-infected human Epstein-Barr virus-transformed B cells (LCL), which were lysed by HLA-restricted anti-HSV CTL, autologous fibroblasts infected with HSV were resistant to lysis. This resistance was not due to a lack of infectivity or production of HSV proteins since greater than 90% of the cells were infected and expressed abundant levels of viral proteins. HSV-infected human fibroblasts were also tested for susceptibility to lysis by alloantigen-specific CTL. Although allogeneic LCL and uninfected allogeneic fibroblasts were killed, human fibroblasts infected with HSV demonstrated a time-dependent resistance to lysis by alloantigen-specific CTL. HSV-infected human fibroblasts were not resistant to all forms of cell-mediated cytotoxicity since they were sensitive to antibody-dependent cellular cytotoxicity. Although one may suspect that the resistance of HSV-infected human fibroblasts to anti-HSV CTL and alloantigen-specific CTL-mediated lysis was due to a lack of major histocompatibility complex expression, Confer et al. (Proc. Natl. Acad. Sci. USA 87:3609-3613, 1990) previously demonstrated that incubation of human natural killer and lymphokine-activated killer cells with monolayers of human fibroblasts infected with HSV "disarmed" the killers in that they were unable to lyse sensitive target cells. We extend their results and show that incubation of anti-HSV CTL or alloantigen-specific CTL with uninfected fibroblasts did not affect their lytic activity, whereas CTL incubated with HSV-infected fibroblasts for 2 to 6 h rendered the CTL incapable of lysing their normally sensitive target cells. Indeed, human fibroblasts infected for merely 2 h with HSV were able to profoundly inhibit the cytotoxic activity of alloantigen-specific CTL. Thus, HSV-infected human fibroblasts are not inherently resistant to lysis by anti-HSV CTL or alloantigen-specific CTL, but rather contact of CTL with HSV-infected fibroblasts resulted in inactivation of the CTL. The inactivation of CTL appears to be HSV specific since incubation of alloantigen-specific CTL in sandwich assays with fibroblasts infected with HSV type 1 (HSV-1) or HSV-2 resulted in inactivation, whereas incubation of CTL with fibroblasts infected with adenovirus or vaccinia virus had no effect. Further, although incubation of alloantigen-specific CTL in sandwich assays with HSV-infected fibroblasts resulted in inhibition of CTL activity, exposure of CTL in Transwell cultures to cell-free supernatant from HSV-infected fibroblasts did not mediate this inhibitory effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
In order to clarify the differential activation of CD4+ and CD8+ HSV-specific CTL, we compared the characteristics of CTL generated by different methods of in vitro HSV stimulation by treatment of effectors with anti-CD4 and anti-CD8 mAb and C after the elimination of nonspecific cytotoxic effector cells. Cell-free HSV mainly activated CD4+ CTL precursors, whereas HSV-infected fibroblasts were more effective in activating CD8+ CTL precursors than CD4+ CTL precursors. In addition, limiting dilution analyses with enriched T cells from two HSV-seropositive donors revealed that the frequency of HSV-specific CD4+ CTL precursors responsive to stimulation with free HSV was approximately 1/4,000 to 6,000 CD4+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/19,000 to 22,000 CD4+ T cells. Conversely, the frequency of CD8+ CTL precursors in peripheral blood responsive to stimulation with free HSV was approximately 1/28,000 to 30,000 CD8+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/10,000 to 11,000 CD8+ T cells. The present data suggest that generalized viral infection due to cell-free viruses is fought mainly by CD4+ CTL, which have previously been reported to possess both cytotoxicity and helper function, and that localized viral infection on HLA class II-negative fibroblasts is prevented from spreading to adjacent cells mainly by CD8+ CTL. Such differential activation of CD4+ and CD8+ CTL seems probable when considering the protective mechanisms against viral infection.  相似文献   

3.
4.
5.
Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-α/β) response is derived from several cell types and induced independently of TLR9. In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages and fibroblasts, where the virus was able to replicate, HSV-induced IFN-α/β production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of pathogen recognition are active, which operate in cell-type- and time-dependent manners to trigger expression of type I IFN and coordinate the antiviral response.  相似文献   

6.
We investigated the role of soluble factors in natural killer (NK) cell-mediated lysis of herpes simplex virus (HSV)-infected cells. Supernatants generated by incubating human peripheral blood mononuclear cells with HSV-infected human fibroblasts contained tumor necrosis factor (TNF) and lysed uninfected U937 cells, but not HSV-infected fibroblasts. U937 cells, but not HSV-infected fibroblasts, were lysed when exposed to recombinant TNF (rTNF) for 18 hr. NK cell-mediated lysis of HSV-infected fibroblasts was not inhibited by addition of anti-TNF or anti-lymphotoxin (LT) antibodies to cytotoxicity assays. Thus, a role for soluble factors, and in particular TNF and LT, in NK cell-mediated lysis of HSV-infected cells could not be demonstrated.  相似文献   

7.
CD8+ and CD8- subsets of peripheral blood natural killer (NK) cells were examined for susceptibility to infection with human immunodeficiency virus type 1 (HIV-1) and for the ability to produce various types of interferon (IFN) and tumor necrosis factor (TNF). HIV-1 was preferentially grown in CD8+ NK cells. The ability of CD8- NK cells to suppress HIV-1 replication was related to their ability to produce alpha IFN (IFN-alpha) upon viral induction. Induction with interleukin-2 resulted in IFN-gamma production in both subsets of NK cells. In the CD8+ subset, IFN-gamma and HIV-1 mutually enhanced the production of TNF alpha, leading to hyperactivation of viral replication, whereas in CD8- NK cells IFN-gamma primed HIV-induced IFN-alpha production. The dichotomous effects of IFN-gamma on HIV-1 replication were dependent on the IFN-alpha-producing ability of the cellular targets. These findings can explain the selective depletion of the CD16+ CD8+ subset that begins early in the in vivo HIV-1 infection.  相似文献   

8.
Impaired cell-mediated immunity predisposes individuals to severe systemic HSV infections. A potential approach for enhancing antiviral immunity is to alter the specificity of T cells and NK cells so that they become cytotoxic against HSV. We describe here the use of heteroconjugate antibodies to augment the killing of HSV-infected cells. Two different types of heteroconjugate antibodies were used: 1) CD3-specific mAb, covalently linked to HSV-specific mAb (e.g., anti-CD3 x anti-HSV-1 glycoprotein C); 2) FcR-specific mAb linked to HSV-specific mAb (e.g., anti-Fc gamma RIII x anti-HSV-1 glycoprotein D). Whereas freshly isolated, PBL were not cytotoxic against HSV-infected target cells in a 5-h 51Cr-release assay, co-incubation with either heteroconjugate resulted in significant cytotoxicity. In vitro activated PBL (anti-CD3 + IL-2) also became more potent killers of HSV-infected cells in the presence of each heteroconjugate. The specificity of anti-CD3 x anti-HSV-1 and anti-Fc gamma RIII x anti-HSV-1 gD for enhancing T cell and NK cell immunity, respectively, was confirmed by using cloned, homogeneous human T cell and NK cell lines as effectors. Kinetic analysis demonstrated that as soon as the infected cells began to express HSV glycoproteins on their surface they became susceptible to this enhanced killing. Prolonged culture of HSV-infected cells with heteroconjugate antibodies and effector cells also decreased the amount of viral replication that occurred, as measured in a plaque inhibition assay. These results suggest that heteroconjugate antibodies are potent immunotherapeutic tools that enhance anti-HSV immunity.  相似文献   

9.
Infant mice are extremely susceptible to fatal Herpes simplex virus (HSV) infection. They are unable to produce antibody to HSV, and their leukocytes cannot mediate antibody-dependent cellular cytotoxicity (ADCC) to HSV-infected cells. In order to avoid H-2-dependent effector mechanisms and instead analyze possible in vivo ADCC, a murine model employing adoptive transfer of antibody and human leukocytes was developed. Administration of either human immune globulin or leukocytes i.p. from HSV immune or nonimmune humans could not protect infant C57BL/6 mice from fatal HSV infection. In contrast, a combination of a subneutralizing dilution of globulin and leukocytes from nonimmune or immune human donors, given one day before inoculation, was highly protective against lethal HSV infection. The cells involved included lymphocytes or monocyte-macrophages. At least 5 X 10(6) viable leukocytes (or 1 X 10(6) monocyte-macrophages) and immune serum globulin concentrations as low as 10(-8) were protective. Infected cell monolayer adsorption and DEAE column fractionation demonstrated that the protection by globulin was due to specific antiviral IgG antibody. Protection was n ot seen in animals receiving virus before immune transfer. Protection did not involve synergistic viral neutralization by antibody and cells, as shown by in vitro experiments. Animals receiving globulin and cells, unlike normal infant mice, had circulating antiviral antibody and peritoneal leukocytes able to mediate ADCC to HSV-infected cells. This is the first in vivo evidence for the role of human ADCC. This model also allows for the in vivo evaluation of the ability of cells from immunocompromised humans to curb viral infection.  相似文献   

10.
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells play key roles in limiting herpesvirus infections; consequently, many herpesviruses, including herpes simplex virus (HSV), have evolved diverse strategies to evade and/or disarm these killer lymphocytes. Previous studies have shown that CTL and NK cells are functionally inactivated following contact with HSV-infected fibroblasts. During studies of the mechanisms involved, we discovered that HSV-inactivated NK-92 NK cells and Jurkat T cells contain a strikingly prominent, novel, ca. 90-kDa tyrosine-phosphorylated protein that we identified as the HSV tegument protein VP11/12. Inasmuch as VP11/12 produced in fibroblasts and epithelial cells is not obviously tyrosine phosphorylated, these data suggested that VP11/12 serves as the substrate of a cell-type-specific protein tyrosine kinase. Consistent with this hypothesis, VP11/12 was also tyrosine phosphorylated in B lymphocytes, and this modification was severely reduced in Jurkat T cells lacking the lymphocyte-specific Src family kinase Lck. These findings demonstrate that HSV tegument proteins can be differentially modified depending on the cell type infected. Our data also raise the possibility that VP11/12 may modulate one or more lymphocyte-specific signaling pathways or serve another lymphocyte-specific function. However, HSV type 1 mutants lacking the UL46 gene retained the ability to block signaling through the T-cell receptor in Jurkat cells and remained competent to functionally inactivate the NK-92 NK cell line, indicating that VP11/12 is not essential for lymphocyte inactivation. Further studies are therefore required to determine the biological function of tyrosine-phosphorylated VP11/12.  相似文献   

11.
Axin, a negative regulator of the Wnt signaling pathway, plays a critical role in various cellular events including cell proliferation and cell death. Axin‐regulated cell death affects multiple processes, including viral replication. For example, axin expression suppresses herpes simplex virus (HSV)‐induced necrotic cell death and enhances viral replication. Based on these observations, this study investigated the involvement of autophagy in regulation of HSV replication and found axin expression inhibits autophagy‐mediated suppression of viral replication in L929 cells. HSV infection induced autophagy in a time‐ and viral dose‐dependent manner in control L929 cells (L‐EV), whereas virus‐induced autophagy was delayed in axin‐expressing L929 cells (L‐axin). Subsequent analysis showed that induction of autophagy by rapamycin reduced HSV replication, and that inhibiting autophagy by 3‐methyladenine (3MA) and beclin‐1 knockdown facilitated viral replication in L‐EV cells. In addition, preventing autophagy with 3MA suppressed virus‐induced cytotoxicity in L‐EV cells. In contrast, HSV replication in L‐axin cells was resistant to changes in autophagy. These results suggest that axin expression may render L929 cells resistant to HSV‐infection induced autophagy, leading to enhanced viral replication.  相似文献   

12.
We compared the levels of gene expression obtained after herpes simplex virus (HSV) superinfection of cell lines containing integrated human beta-interferon (IFN) or chloramphenicol acetyltransferase (CAT) genes under the control of HSV immediate-early (IE) or delayed-early class promoters. DNA-transfected mouse Ltk+ cell lines harboring coselected IE175-IFN or thymidine kinase (TK)-IFN hybrid genes gave only low basal expression of human IFN. However, infection of both cell types with HSV type 1 or HSV type 2 produced abundant synthesis of IFN-specific RNA and biologically active IFN protein product. The IE175-IFN cell lines consistently gave 20- to 150-fold increases in IFN titers, and several TK-IFN cell lines yielded 100- to 500-fold induction. In the IE175-IFN cells, expression of IFN RNA also increased up to 200-fold and was detectable within 30 to 60 min after virus infection. Qualitatively similar results were obtained with hybrid G418-resistant Ltk- or Vero cell lines containing coselected IE175-CAT and TK-CAT constructs, except that there was relatively high basal expression of IE175-CAT. All three sets of IE cell lines (but not the delayed-early cell lines) responded to virus infection both in the presence of cycloheximide and with mutants defective in IE gene expression, demonstrating specific trans-activation by the pre-IE virion factor. In contrast, activation in the TK hybrid cell types required viral gene expression and the presence of a functional IE175 gene product. Up to 30-fold amplification in the copy number of the resident IFN or CAT DNA sequences also occurred within 20 h after HSV infection in IE175 hybrid cells but not in TK hybrid cells. Amplification was abolished either by treatment with phosphonacetate or by superinfection with a ts mutant unable to synthesize viral DNA, demonstrating specific HSV activation of the viral DNA replication origin (oriS) present in the IE hybrid constructs.  相似文献   

13.
Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5′-to-3′ exonuclease (UL12) and a single strand annealing protein [SSAP (ICP8)] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA) was increased in HSV-infected cells, while homologous recombination (HR), non-homologous end joining (NHEJ) and alternative non-homologous end joining (A-NHEJ) were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection.  相似文献   

14.
Macrophages derived from human peripheral blood and cultured for 1 week were permissive for the replication of herpes simplex virus (HSV) types 1 and 2. Low titers of interferon (IFN) were produced after virus infection. The yield of infectious virions was reduced by pretreatment of cells with natural and recombinant IFN-alpha and natural IFN-beta. Recombinant and natural IFN-gamma exhibited very low antiviral activity. Treatment of cells with IFN-gamma mixed with IFN-alpha or with IFN-beta did not result in a synergistic inhibition of virus yield. We studied the synthesis of HSV type 1- and HSV type 2-coded proteins in macrophages treated with IFN-beta. Induction of the HSV beta-protein DNA polymerase was strongly inhibited in IFN-treated cells in a dose-dependent manner. As shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, other beta- and gamma-proteins of HSV were inhibited as well. Immunofluorescence studies revealed a strong inhibition of the expression of immediate early alpha-protein ICP4. The results indicate that IFN acts early during the viral replication cycle to inhibit the synthesis of HSV alpha- and beta-proteins.  相似文献   

15.
T Liu  Q Tang    R L Hendricks 《Journal of virology》1996,70(1):264-271
Following herpes simplex virus type 1 (HSV-1) infection of the cornea, the virus is transmitted to the trigeminal ganglion, where a brief period of virus replication is followed by establishment of a latent infection in neurons. A possible role of the immune system in regulating virus replication and maintaining latency in the sensory neurons has been suggested. We have investigated the phenotype and cytokine pattern of cells that infiltrate the A/J mouse trigeminal ganglion at various times after HSV-1 corneal infection. HSV antigen expression in the trigeminal ganglion (indicative of the viral lytic cycle) increased until day 3 postinfection (p.i.) and then diminished to undetectable levels by day 7 p.i. The period of declining HSV antigen expression. was associated with a marked increase in Mac-1+ cells. These cells did not appear to coexpress the F4/80+ (macrophage) or the CD8+ (T cell) markers, and none showed polymorphonuclear leukocyte morphology, suggesting a possible early infiltration of natural killer cells. There was also a significant increase in the trigeminal ganglion of cells expressing the gamma delta T-cell receptor, and these cells were found almost exclusively in very close association with neurons. This period was also characterized by a rapid and equivalent increase in cells expressing gamma interferon and interleukin-4. The density of the inflammatory infiltrate in the trigeminal ganglion increased until days 12 to 21 p.i., when it was predominated by CD8+, Mac-1+, and tumor necrosis factor-expressing cells, which surrounded many neurons. By day 92 p.i., the inflammatory infiltrate diminished but was heaviest in mice with active periocular skin disease. Our data are consistent with the notion that gamma interferon produced by natural killer cells and/or gamma delta T cells may play an important role in limiting HSV-1 replication in the trigeminal ganglion during the acute stage of infection. In addition, tumor necrosis factor produced by CD8+ T cells and macrophages may function to maintain the virus in a latent state.  相似文献   

16.
Macrophages isolated from mice resistant to acute (lethal) infection with a neurovirulent isolate of HSV-1 express intrinsic resistance to viral infection in vitro. Bone marrow (BM), spleen (S), peritoneal (P), and thioglycolate-stimulated peritoneal (Pthio) macrophages isolated from resistant C57BL/6 Cr (B6) mice consistently restrict HSV-1 macromolecular synthesis earlier in the viral replicative cycle than do macrophages isolated from the same tissue sources from more susceptible DBA/2Cr (D2) mice. B6-BM (BM macrophages from B6 mice) restrict HSV macromolecular synthesis at least at two points in the replicative cycle: 1) before the onset of alpha-protein synthesis and 2) between the onset of gamma 1 protein and DNA synthesis. D2-BM macrophages restrict HSV replication at about the time of DNA synthesis. B6-P macrophages restrict HSV replication shortly after gamma 1 protein synthesis, and D2-P macrophages inhibit the virus slightly later, but before DNA synthesis. B6-S macrophages restrict HSV replication at about the time of DNA synthesis, and D2-S macrophages inhibit replication after the onset of gamma 2 protein synthesis. Pthio macrophages are more permissive to HSV infection than BM, P, or S macrophages: restrictions in viral replication occur at the time of DNA synthesis in B6-Pthio macrophages, and after the onset of gamma 2 protein synthesis in D2-Pthio cells. These studies demonstrate that isolated macrophages from inbred mouse strains express intrinsic resistance to HSV infection that correlates with in vivo resistance to acute (lethal) infection. Intrinsic resistance to HSV-1 infection is due to restriction of viral macromolecular synthesis. HSV replication is inhibited in macrophages at multiple points in the viral growth cycle, depending on the tissue from which the cells are isolated.  相似文献   

17.
Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV replicon whose encoded NS5A protein exhibited differential abilities to bind and inhibit protein kinase R (PKR). Metabolic labeling experiments revealed that IFN had little overall effect upon HCV protein stability or polyprotein processing but specifically blocked translation of the HCV RNA, such that the replication of both viral quasispecies was suppressed by IFN treatment of the Huh7 host cells. However, within cells expressing an NS5A variant that inhibited PKR, we observed a reduced level of eukaryotic initiation factor 2 alpha subunit (eIF2alpha) phosphorylation and a concomitant increase in HCV protein synthetic rates, enhancement of viral RNA replication, and a partial rescue of viral internal ribosome entry site (IRES) function from IFN suppression. Assessment of the ribosome distribution of the HCV replicon RNA demonstrated that the NS5A-mediated block in eIF2alpha phosphorylation resulted in enhanced recruitment of the HCV RNA into polyribosome complexes in vivo but only partially rescued the RNA from polyribosome dissociation induced by IFN treatment. Examination of cellular proteins associated with HCV-translation complexes in IFN-treated cells identified the P56 protein as an eIF3-associated factor that fractionated with the initiator ribosome-HCV RNA complex. Importantly, we found that P56 could independently suppress HCV IRES function both in vitro and in vivo, but a mutant P56 that was unable to bind eIF3 had no suppressive action. We conclude that IFN blocks HCV replication through translational control programs involving PKR and P56 to, respectively, target eIF2- and eIF3-dependent steps in the viral RNA translation initiation process.  相似文献   

18.
Human coinfection with the helminth parasite Schistosoma mansoni and hepatitis B and hepatitis C viruses is associated with increased hepatic viral burdens and severe liver pathology. In this study we developed a murine S. mansoni/lymphocytic choriomeningitis virus (LCMV) coinfection model that reproduces the enhanced viral replication and liver pathology observed in human coinfections, and used this model to explore the mechanisms involved. Viral coinfection during the Th2-dominated granulomatous phase of the schistosome infection resulted in induction of a strong LCMV-specific T cell response, with infiltration of high numbers of LCMV-specific IFN-gamma-producing CD8+ cells into the liver. This was associated with suppression of production of the Th2 cytokines dominant during S. mansoni infection and a rapid increase in morbidity, linked to hepatotoxicity. Interestingly, the liver of coinfected mice was extremely susceptible to viral replication. This correlated with a reduced intrahepatic type I IFN response following virus infection. Schistosome egg Ags were found to suppress the type I IFN response induced in murine bone marrow-derived dendritic cells by polyinosinic-polycytidylic acid. These results suggest that suppression of the antiviral type I IFN response by schistosome egg Ags in vivo predisposes the liver to enhanced viral replication with ensuing immunopathological consequences, findings that may be paralleled in human schistosome/hepatotropic virus coinfections.  相似文献   

19.
One hundred thirteen HSV-specific CD4+ T cell clones were established from the PBL of a healthy person and their functional heterogeneity was investigated. All clones proliferated in response to stimulation with HSV in the presence of autologous APC. Among those, 48 clones showed cytotoxic activity to HSV-infected autologous EBV-transformed lymphoblastoid cell line, but not to HSV-infected autologous fibroblasts, HSV-infected allogeneic cells, or K562 cells (group 1). Five clones showed cytotoxicity against HSV-infected autologous cells as well as HSV-infected allogeneic cells and K562 cells (group 2). The cytotoxicity of these clones was found to be mediated by the direct killing but not by the "innocent bystander" killing of target cells. Sixty clones showed no cytotoxic activity, however, among these, 23 revealed HLA-unrestricted and nonspecific cytotoxicity in the presence of PHA in culture (group 3), and the remaining 37 did not show any cytotoxic activity even in the presence of PHA (group 4). The cytotoxic patterns of these clones did not change in activated and resting phases, suggesting that the difference in cytotoxic ability does not depend on cell cycles. The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR or anti-CD3 mAb to the culture, whereas these mAb had no effect on the cytotoxicity of group 2. All four groups of clones had helper activity for anti-HSV antibody production by autologous B cells. Moreover it was found that all groups of clones simultaneously produced IL-2, IL-4, and IFN-gamma after culture with APC followed by HSV Ag stimulation. The surface phenotype of all clones was uniformly CD2+, CD3+, CD4+, CD8-, CD29+, CD45RA-, but expression of Leu 8 was varied. These data therefore indicate that HSV-specific human CD4+ T cells are classified into at least four groups according to the presence and specificity of cytotoxicity, i.e., Th cells with HSV-specific and HLA-class II-restricted cytotoxicity, Th cells with HLA-unrestricted and nonspecific cytotoxicity, Th cells with lectin-dependent cytotoxicity, and Th cells without cytotoxic activity. The present finding of functional heterogeneity among virus-specific human CD4+ T cells might shed light on the pathogenesis of CD4+ T cell immunodeficiency, such as human retrovirus infections.  相似文献   

20.
Herpes simplex virus (HSV) glycoprotein K (gK) is thought to be intimately involved in the process by which infected cells fuse because HSV syncytial mutations frequently alter the gK (UL53) gene. Previously, we characterized gK produced in cells infected with wild-type HSV or syncytial HSV mutants and found that the glycoprotein was localized to nuclear and endoplasmic reticulum membranes and did not reach the cell surface (L. Hutchinson, C. Roop, and D. C. Johnson, J. Virol. 69:4556-4563, 1995). In this study, we have characterized a mutant HSV type 1, denoted F-gK beta, in which a lacZ gene cassette was inserted into the gK coding sequences. Since gK was found to be essential for virus replication, F-gK beta was propagated on complementing cells which can express gK. F-gK beta produced normal plaques bounded by nonfused cells when plated on complementing cells, although syncytia were observed when the cells produced smaller amounts of gK. In contrast, F-gK beta produced only microscopic plaques on Vero cells and normal human fibroblasts (which do not express gK) and these plaques were reduced by 10(2) to 10(6) in number. Further, large numbers of nonenveloped capsids accumulated in the cytoplasm of F-gK beta-infected Vero cells, virus particles did not reach the cell surface, and the few enveloped particles that were produced exhibited a reduced capacity to enter cells and initiate an infection of complementing cells. Overexpression of gK in HSV-infected cells also caused defects in virus egress, although particles accumulated in the perinuclear space and large multilamellar membranous structures juxtaposed with the nuclear envelope were observed. Together, these results demonstrate that gK regulates or facilitates egress of HSV from cells. How this property is connected to cell fusion is not clear. In this regard, gK may alter cell surface transport of viral particles or other viral components directly involved in the fusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号