首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Most secreted eukaryotic proteins are modified by glycosylation, and it has been difficult to solve their structures by crystallographic or NMR techniques because of problems posed by the presence of the carbohydrate. The structure of a chemically deglycosylated form of the human pregnancy hormone, human chorionic gonadotropin (hCG), has been solved by crystallographic methods. Since chemical deglycosylation may have induced changes in the structure, and since it is known that deglycosylated hCG is biologically inactive, the crystallographic structure requires confirmation by NMR techniques. Also, it has not been possible to determine the structures of the isolated subunits, nor the nature of interactions between the carbohydrate side chains and the protein back bone by crystallographic methods. Structural information via NMR techniques can be obtained from proteins in solution if they can be uniformly labeled with 13C and 15N isotopes. We report the first such uniform labeling of a glycoprotein using a universal 13C-and 15N-labeling medium to express 13C, 15N-labeled hCG, suitable for solving the structure in solution of the native, biologically active form of hCG as well as that of its free subunits. The 13C, 15N-labeled recombinant hCG and its separated subunits are shown to be nearly identical to urinary hCG reference preparations on the basis of protein chemical studies, immunochemistry, biological activity, and the capability of isolated hormone subunits to recombine to form biologically active hormone. Mass spectrometric analysis and preliminary NMR studies indicate that the isotopic labeling is uniform and greater than 90% after only two growth passages in the labeling media. One unexpected finding during subunit purification was that lyophilization of glycoproteins from trifluoroacetic acid HPLC buffers may result in the loss of a significant portion of sialic acid.To whom correspondence should be addressed.  相似文献   

2.
Human chorionic gonadotropin (hCG) beta-subunit core fragment (beta-fragment) is present in the urine of pregnant individuals as well as those with trophoblast disease and certain other cancers at concentrations 0.8 (early pregnancy) to 7 (second trimester pregnancy)-fold greater than that of hCG. The core fragment may be directly secreted by trophoblast tissue into the circulation or possibly originates from peripheral degradation of circulating hormone by the kidney. We examined the former hypothesis. We examined 24-h organ cultures of trophoblast tissue from first, second, and third trimester pregnancy. The media from this tissue contained hCG, free beta-subunit, and beta-fragment. The amount of beta-fragment present exceeded that of hCG, as was observed in second and third trimester pregnancy urine. The beta-fragment immunoreactive material produced by trophoblast tissue was compared to a standard preparation of urinary beta-fragment. The material in medium was identical to the standard beta-fragment in its elution pattern from a gel filtration column, from a reverse-phase HPLC column, from an ion-exchange gel, and from an immobilized lectin affinity column, and also by electrophoresis and immunoblotting with fragment-reactive monoclonal antibodies. We conclude that beta-fragment can also originate directly from trophoblast tissue, and could be the principal hCG beta-immunoreactive molecule secreted.  相似文献   

3.
Human CG is a pregnancy marker secreted by the placenta, and it utilizes the same receptors as does LH. Human CG is a heterodimer, and its subunits are expressed in tissues other than placenta. Similarly, LH/hCG receptors are also expressed in multiple tissues; however, the physiological significance of this expression is unknown. Free hCGbeta is efficiently secreted in vitro in transfected cells and is highly expressed in many human cancers; however, the biological effects of free hCGbeta in vivo are unknown. To study in vivo consequences of elevated levels of free hCGbeta and hCG dimer in both male and female reproductive physiology, we used mouse metallothionein 1 promoter to generate multiple lines of transgenic mice that overexpressed either one or both subunits of hCG. Although mice expressing the glycoprotein hormone alpha subunit are normal and fertile, both male and female transgenic mice overexpressing only the hormone-specific hCGbeta subunit are infertile. The hCGbeta subunit-expressing transgenic female mice progressively develop cystic ovaries, whereas the male transgenic mice are infertile but otherwise are not phenotypically discernible. In contrast, both the male and female transgenic mice coexpressing high levels of the hCG subunits (i.e., the hCG dimer) demonstrate multiple reproductive defects. The male transgenic mice have Leydig cell hyperplasia, very high levels of serum testosterone, reduced testis size, and dramatically enlarged seminal vesicles and are infertile and display overly aggressive behavior when caged with females. The female transgenic mice are also infertile, have elevated levels of serum estradiol, and progressively develop hemorrhagic and cystic ovaries with thecal layer enlargement and stromal cell proliferation and degenerating kidneys. These results suggest that the in vivo biological effects of ectopically expressed free hCGbeta subunit are distinct from those of the hCG dimer and are gender specific. These transgenic mice are useful models for studying the biology of free hCGbeta subunit, for further analyzing the gain of function effects of hCG during early Leydig cell development, and for studying the roles of hCG in ovarian and kidney pathophysiology and function.  相似文献   

4.
Summary The sites of intracellular synthesis and storage of human placental lactogen (hPL) and human chorionic gonadotropin (hCG) are controversial. We have used one of the most sensitive methods, cryoultramicrotomy and immunogold labelling, to localise these hormones at the electron-microscopic level. In both 12-week and term placentas hCG and hPL are present throughout the rough endoplasmic reticulum cisternae, in the Golgi bodies, and in the infrequent small dense granules of the syncytiotrophoblast. Previous assays have shown that hCG is at a higher concentration in early pregnancy and hPL peaks in late pregnancy, and our results corroborate these findings. No significant localisation of either hormone was seen in the cytotrophoblast or villous stroma. The results suggest that both hCG and hPL are synthesised and packaged by the classical secretory pathway, although the level of hormone stored in granules at any one time is small.  相似文献   

5.
BACKGROUND: Several human chorionic gonadotropin (hCG) derivatives have been detected in healthy human subjects, indicating that they may play a role in cell function. These hCG derivatives include deglycosylated hCG, proteolytic digestion products of hCG and free alpha and beta subunits of the hormone. It is well documented that testicular Leydig cells are responsive to luteinising hormone (LH) or its analogue hCG. These hormones have high affinity for LH/hCG receptors on the plasma membrane. METHODS: We designed functional and binding studies to compare the effects of native hCG and several hCG derivatives on a rat Leydig cell system. The molecular weight of the hCG derivatives was determined by SDS-PAGE and the binding affinity to LH/hCG receptors was measured by a radioligand assay. In addition, their ability to produce testosterone, cyclic AMP and arachidonic acid release was also studied. RESULTS: These hCG derivatives, with the exception of the free beta subunit, were able to bind to LH/hCG plasma membrane receptors with different affinities than that of native hCG. In addition, hCG derivatives did not increase intracellular cAMP levels or arachidonic acid release. However, they did increase testosterone production. CONCLUSION: Taken together, the results of this study lead us to suggest that these hCG derivatives may regulate the action of the native hormone in Leydig cells and are, thus, molecules of physiological relevance.  相似文献   

6.
Human chorionic gonadotropin (hCG) is a glycoprotein hormone comprising 2 subunits, alpha and beta joined non covalently. While similar in structure to luteinizing hormone (LH), hCG exists in multiple hormonal and non-endocrine agents, rather than as a single molecule like LH and the other glycoprotein hormones. These are regular hCG, hyperglycosylated hCG and the free beta-subunit of hyperglycosylated hCG.  相似文献   

7.
Human chorionic gonadotropin (hCG) is a glycoprotein hormone composed of two dissimilar subunits, alpha and beta. Nicks or missing peptide linkages have been found in the beta 44-52 region of the beta-subunit of hCG, whether from pregnancy or trophoblast disease. This article reviews recent reports about the location of nicks in hCG, their origin and occurrence, their effects on the steroidogenic and receptor-binding activities of hCG, and on the immunological activities of hCG and its free beta-subunit. Taken together, the reports show: (1) nicks occur primarily between beta 47 and beta 48, and to a lesser extent between beta 44 and beta 45; (2) the extent of nicking in hCG samples varies widely, from undetectable to 100 percent of molecules; (3) nicks greatly reduce the steroidogenic activity of hCG in vitro (nicked molecules have less than 20 percent of the activity of the intact hormone); (4) nicks may occur at the trophoblast-myometrial interface or in the circulation by the action of human leucocyte elastase or similar leucocytic protease; (5) hCG testing kits using dimer-specific antibodies may not detect nicked molecules and may give different results from those using other antibodies; (6) hCG international reference preparations and the CR series of hCG standards are variably nicked (10 percent to 20 percent), complicating the problem of discordant hCG results in nick-sensitive assays; (7) results from commonly used immunoassays for measurement of the hCG free beta-subunit vary by as much as tenfold because some of the antibodies employed do not detect nick free beta-subunit.  相似文献   

8.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The alpha- and beta-subunits of hCG are highly cross-linked internally by disulfide bonds which seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. The purpose of this study was to delineate the role of the disulfide bonds of hCGbeta in receptor binding of the hormone. Six disulfide peptides incorporating each of the six disulfide bonds of hCGbeta were synthesized and screened, along with their linear counterparts, for their ability to competitively inhibit the binding of [125I] hCG to sheep ovarian corpora luteal LH/CG receptor. Disulfide peptide Cys (9-57) was found to be approximately 4-fold more potent than the most active of its linear counterparts in inhibiting radiolabeled hCG from binding to its receptor. Similarly, disulfide peptide Cys (23-72) exhibited receptor binding inhibition activity, whereas the constituent linear peptides were found to be inactive. The results suggest the involvement of the disulfide bonds Cys(9)-Cys(57) and Cys(23)-Cys(72) of the beta-subunit of hCG in receptor binding of the hormone. This study is the first of its kind to use disulfide peptides rather than linear peptides to map the receptor binding regions of hCG.  相似文献   

9.
Human chorionic gonadotrophin (hCG) is a heterodimeric glycoprotein hormone consisting of an alpha- and a beta-subunit, both containing two N-linked, complex-type glycans. Using this hormone as a model glycoprotein, the influence of its polypeptide part on the activity and specificity of bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase (alpha 6-sialyltransferase) was investigated. Initial rates of sialic acid incorporation into the desialylated glycans of hCG alpha and hCG beta in the heterodimer were higher with the alpha-subunit. This appeared to be due to a higher V which, together with a slightly lowered affinity (higher Km), resulted in a higher kinetic efficiency of the sialyltransferase for the glycans of this subunit. By contrast, the kinetic parameters did not differ significantly when the subunits were in the free form, indicating that the differences in the kinetics of sialylation found for the subunits in the heterodimeric state were not caused by the differences in N-linked carbohydrate structures of the subunits. It is proposed that these effects are due to conformational constraints which the polypeptide moieties put on the glycan chains upon dimerization. Furthermore, it was investigated whether the polypeptide of hCG would interfere with the sialyltransferase so as to alter the branch specificity of the enzyme. 1H-NMR spectroscopy (400 MHz) of the glycan chains, alpha 6-sialylated in vitro, showed that the enzyme highly prefers the galactosyl residue at the Gal beta 1----4GlcNAc beta 1----2-Man alpha 1----3Man branch for attachment of the first mol of sialic acid into the diantennary glycans of desialylated hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Human chorionic gonadotropin (hCG), is a placental hormone which exerts its major effect by stimulating progesterone production, crucially sustaining the early weeks of pregnancy. Detection of hCG with specific monoclonal antibodies (mAbs) has become the chosen means for pregnancy diagnosis. We have used antibody Fv fragments derived from two high-affinity mAbs, one against the alpha and the other against the beta-hCG subunit to enable the crystallisation of intact or desialylated hCG. Crystals of a ternary complex composed of Fv anti-alpha/hCG/Fv anti-beta were found to diffract to 3.5 A resolution, and the structure was solved by molecular replacement. In the crystal, the two Fvs keep hCG as in a molecular cage, providing good protein-protein contacts and leaving enough space for the saccharides to be accommodated in the cell solvent. The two Fvs were found not to interact directly through their complementary-determining regions with the hCG saccharides, but only with the protein. The hCG structure in the ternary complex was very close to that of the HF partially deglycosylated hormone, thus indicating that neither the saccharides nor the Fvs had any substantial influence on hormone structure.  相似文献   

12.
Most antisera generated to isolated highly purified beta subunits of human glycoprotein hormones are not sufficiently sensitive to detect physiologic blood levels of the native hormone. In the dissociated state, beta subunits assume a conformation different from that in the native hormone. Since antisera to alpha subunits have essentially no cross-reactivity between species, highly purified hCG-beta was combined with bTSH-alpha. That hybrid served as immunogen to assess whether sensitive, specific hCG antisera would more likely result than using hCG-beta alone. Of five animals immunized, three developed sufficiently sensitive and specific antisera. The results of these studies strongly suggests that human glycoprotein beta subunits combined with non-human alpha subunit are more likely to yield specific, sensitive antisera than when either isolated beta subunit or the native human glycoprotein hormone, containing common alpha determinants, serves as immunogen.  相似文献   

13.
14.
Both the O- and N-linked oligosaccharide moieties of the subunits of the placental glycoprotein hormone, human choriogonadotropin (hCG), are removed by treatment with a mixture of glycosidases produced by Streptococcus (Diplococcus) pneumoniae. The resulting deglycosylated subunits recombine with their native counterparts in good yield, and the reassociated hormones bind to gonadotropin receptors equally as well as the untreated hormone. Stimulation of steroidogenesis by the deglycosylated alpha-native beta recombinant, however, was markedly less than the stimulation by unmodified hCG both in terms of relative potency (0.10-0.15) and the maximal amount of steroid (40-50%) produced. The native alpha-deglycosylated beta recombinant produced a maximum level of steroid production of 80-90% that of control hCG although its relative potency had decreased approximately 4-fold. The data are in accord with results by others in which either hCG or lutropin was partially deglycosylated by treatment with anhydrous hydrofluoric acid. In addition, the effects of deglycosylation on the ability of each subunit to refold after reduction of their disulfide bonds was studied. Of particular interest is that, after deglycosylation, the beta subunit can correctly refold to a significant degree, in contrast to several unsuccessful attempts to demonstrate correct refolding of the unmodified beta subunit of either lutropin or hCG. Alpha subunit, as measured by a conformation sensitive radioimmunoassay, refolds with equal facility both before and after deglycosylation.  相似文献   

15.
Experiments were designed to determine why copulation in the pregnant rabbit does not terminate pregnancy while treatment with ovulatory doses of luteinizing hormone (LH) human chorionic gonadotropin (hCG) or luteinizing hormone-releasing hormone (LHRH) is known to do so. Pregnant rabbits (Day 8) were mated or were injected with hCG (25 IU/doe) or LHRH (1, 10 micrograms/kg). Serial blood samples were collected over the next 72 h and analyzed for content of LH, follicle-stimulating hormone (FSH) and progesterone. At sacrifice, uteri and ovaries from these animals were examined for viability of the embryos and for signs of recent ovulation. Injection of hCG or LHRH into pregnant animals led to ovulation and to patterns of LH, FSH and progesterone secretion like those which precede ovulation in estrous rabbits. However, mating the pregnant does did not lead to ovulation or to any changes in the circulating hormones. To investigate whether the elevated levels of progesterone during pregnancy were responsible for the dissociation of coitus from ovulation, nonpregnant rabbits were injected with progesterone (2 mg/kg) and then mated or injected with hCG or LHRH. In virtually every respect, the numbers of ovulations and the patterns of hormone secretion in the progesterone-treated, nonpregnant rabbits mimicked those observed in the 8-day pregnant animals; injection of hCG or LHRH caused ovulation and hormonal surges while hCG caused ovulation only. Mating did not lead to ovulation or any change in blood levels of LH, FSH or progesterone. Taken together, the results show that the elevated circulating levels of progesterone, characteristic of pregnancy, are probably responsible for the dissociation of copulation from gonadotropin release in pregnant rabbits.  相似文献   

16.
The molecular sizes of human chorionic gonadotropin (hCG) subunits in the native state in normal first trimester placental extracts were determined by gel filtration on Sephacryl S-300, followed by SDS-polyacrylamide gel electrophoresis, protein blotting, and immunobinding analysis using anti-alpha and - beta antibodies. Mature forms of hCG subunits in the extracts were only found in the same fraction as that which contained standard urinary hCG, indicating an alpha beta dimer. On the other hand, immature forms were detected with a wide range of molecular weights, which were higher than that of standard hCG, suggesting oligomerization of associated or non-associated immature subunits. In order to determine the associated state of these subunits, various forms of associated subunits (hCG alpha beta) in placental extracts were immunoprecipitated with anti-hCG antiserum, which only recognized hCG alpha beta, and Protein A-Sepharose. They were then analyzed by SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions, followed by immunobinding assaying. It has been suggested that there are three kinds of hCG alpha beta S (one mature and two immature). To confirm the above results and to clarify the existence of free subunits, placental extracts were subjected to two-dimensional SDS-polyacrylamide gel electrophoresis. With this technique, high molecular weight forms of immature hCG subunits were found to be present in placental cells as an oligomer of not only the alpha beta dimer but of each subunit as well.  相似文献   

17.
Exposure of aqueous solutions of native human choriogonadotropin (hCG), asialo-hCG (A-hCG), and chemically deglycosylated hCG (DG-hCG) to heat treatment revealed significant differences in their stability. Solutions of hCG and A-hCG were rapidly inactivated above 50 degrees C. On the other hand, solutions of DG-hCG were comparatively more stable under similar conditions as shown by the retention of significant receptor binding, immunological, and hormonal antagonistic activities. Heated solutions (100 degrees C) of hCG and A-hCG quickly lost their ability to enhance the fluorescence of the probe 1-anilino-8-naphthalenesulfonate (1,8-ANS) indicating dissociation into subunits. DG-hCG solutions were more stable in this respect suggesting significant preservation of conformational features required for the interaction with 1,8-ANS. Solutions of hCG and A-hCG which had been thermally denatured (100 degrees C, 10 min) required almost 48 h at 37 degrees C to regain complete ANS binding ability as well as receptor binding activity. Under the same conditions, heated solutions of DG-hCG completely regained these abilities in less than 2 h. A similar pattern was observed with acid (pH 2.0)-dissociated hCG, A-hCG, and DG-hCG. While heated solutions of hCG had no effect on the action of native hCG in vitro, heated DG-hCG solutions still retained their ability to antagonize the cyclic AMP accumulation or steroidogenesis induced by native hCG in rat interstitial cells. Thus, removal of carbohydrate residues (approximately 75% loss) from hCG renders the hormone more resistant to thermal denaturation.  相似文献   

18.
Interactions of the placental glycoprotein hormone human choriogonadotropin (hCG) with lutropin receptors (LHR) are required for maintenance of early pregnancy. Knowledge of how hCG interacts with LHR is useful for understanding the mechanism of receptor function, an issue of considerable debate. A large surface of hCG remains exposed after the hormone binds the LHR and can be readily detected with monoclonal antibodies. Here we show that the surface of hCG α-subunit loop 1 furthest from the β-subunit interface can also be recognized by a monoclonal antibody when hCG is bound to the LHR. This extends the area of hCG known to be exposed in the hormone receptor complex, an observation that further restricts models of hCG–LHR interaction.  相似文献   

19.
The glycoprotein hormones are a family of conserved heterodimeric proteins which share a common alpha subunit but differ in their hormone-specific beta subunits. We used chimeras of human chorionic gonadotropin (hCG) and luteinizing hormone (hLH) beta subunits to identify residues which enable monoclonal antibodies (mAb) to distinguish the two hormones. The LH beta-CG beta chimeras appeared to fold similar to hCG beta, since they combined with hCG alpha and, depending on their sequences, were recognized by hCG-selective mAbs. Amino acid residues Arg8-Arg10,Gly47-Ala51, and Gln89-Leu92 form a major epitope region and appear to be adjacent to each other on the surface of hCG beta. Gly47-Ala51 and Gln89-Leu92 are recognized by dimer-specific mAbs while Arg8-Arg10 is recognized by mAbs which have highest affinity for the free beta subunit. These observations suggest that the conformation of this region of the beta subunit changes when the alpha and beta subunits combine. Residues which are C-terminal of Asp112 form a second epitope domain. mAbs to the third domain distinguish hCG beta and hLH beta by the presence of Asn77 in hCG beta and can be detected after hCG binds to receptors. These findings were used to develop a model of hCG beta which predicts the locations of these residues and their positions relative to the alpha subunit and receptor interfaces.  相似文献   

20.
The luteinizing hormone/human choriogonadotropin (hCG) receptor from superovulated rat ovary was purified to homogeneity. A novel scheme based on reverse immunoaffinity chromatography using immobilized antibodies to membrane proteins from receptor down-regulated ovary and subsequent two-step affinity purification on hCG-Sepharose was used to isolate homogeneous receptor. The purification method was also compared to an alternate scheme involving lectin affinity chromatography followed by hCG affinity chromatography. The purified receptor obtained by the latter method was heterogeneous and highly aggregated. The hormone binding properties, molecular size, and subunit composition of the purified receptor obtained by either method were identical. The stability of the receptor during and following solubilization was markedly improved by using 20% glycerol. The pure receptor consists of four nonidentical subunits of molecular weight 79,300 (alpha), 66,400 (beta), 55,300 (gamma), and 46,700 (delta) as indicated by polyacrylamide gel electrophoresis under reducing conditions. All receptor subunits generally, but occasionally excepting the alpha-subunit, were specifically labeled with iodinated hCG in membrane and soluble receptor preparations using bifunctional cross-linking agents. Analysis of the cross-linked hormone-receptor complexes under nonreducing conditions showed the molecular mass of the undissociated receptor to be 268,000 daltons. Hormone binding studies demonstrated that the isolated receptor retained all of the specific binding characteristics expected for the luteinizing hormone/hCG receptor. In combination, these results indicate that the functional and structural properties of the receptor were not altered during purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号